Stata: Data
Manipulation and
Analysis

Stata: Data Manipulation and Analysis

How to Use This Course Book

This handbook accompanies the taught session for the course. Each section
contains a brief overview of a topic for your reference and some sections are
followed by exercises.

The Exercises

Exercises are arranged as follows:
. A title and brief overview of the tasks to be carried out;
o A numbered set of tasks, together with a brief description of each;
. Solutions to the exercises will be handed out at the end of the course

Some exercises, particularly those within the same section, assume that you have
completed earlier exercises. Your lecturer will direct you to the location of files
that are needed for the exercises. If you have any problems with the text or the
exercises, please ask the lecturer or one of the demonstrators for help.

This book includes plenty of exercise activities — more than can usually be
completed during the hands-on sessions of the course as well as some tasks that
can be performed as a homework. These are clearly outlined throughout the
coursebook.

Writing Conventions

Certain conventions are used to help you to be clear about what you need to do in
each step of a task.

o Stata commands are presented with a small font on a new line
similarly to the official Stata syntax conventions.

. A button to be clicked will look .
Objectives

From this coursebook you should:

e Beable to set up libraries within Stata

Be familiar with egen functions

e Understand theroleof Nand _n

e Be able to perform a variety of data manipulations using Stata functions
¢ Know how to use by groups effectively

e Beable to recode string into numeric variables and vice versa

e Be able to merge, append and reshape data

IT Services 2

Stata: Data

Contents

IT Services

Manipulation and Analysis

How to Use This Course BoOKccceveeeeeiiieeeciiiiiieeeeeeeeeeeens 2

1 Setting up a New .do File: Keeping a Log and Specifying

Libraries Using Global Macrosccccceeeeiiieeeccciniinieeeeeeeseeeenes 6
1.1. Clear & Set MOTe Offccoceiiiiiieeceeeceeecece e 6
1.2, Capture 10g ClOSEcceccuuriieeeeceieeeccee et are e e e 6
1.3. Keeping a log of the .do-filecccouriiieeiiiiiieeee e, 6
1.4. ANNOTATIONS cuvvvvvrererrririreririrererertrrrerererererrrererrrrrerrrrrer.rerer..r.........—... 7
1.5. GlODAL IMACTOS. . .uvvvieieeeeiiieiirieeeeeeeceeeeirree e e e e eeeeessnsarereeeeeeeeesssnsnnes 7
1.6. The current working file..........ccceeeveeeeiieeeiieiccieecceeccee e 9

2 Intermediate data manipulation commands in Stata: (egen;

B oI D D PR 10
2.1. Egen (extensions to generate)........cccccceeveeeeernseennienicenncenseeeneeenne 10
2.2, NANA N ittt ceeeerrrre e e e e eeeessasraaereeeeeeeesssnnnes 13

Exercise 1 Understanding the Egen Command and the role of

N & N (25 IMNS) uiiiiiiiiiiiiiiiiieieeeerireeeeeerrrreeeeerraeeeeerraneees 16

3 FUNCLIONS ettt e e e e aae e e e e eeannas 18
3.1. NUMETIC fUNCHONS . ..evviiieeiiiiiiiieeeee e e e e eeeeesnanrereeeeeeeeenans 18
3.2. Random number functions........ccccccoueeeeeciiieeeeciiieeeccceee e 18
3.3. SIriNg fUNCHONS ...uvviiieiiiiieiieerieeeceeeee e ae e e eee s 19
3.4. Tostring and deStringcccccueeeeceieereiieeeeieeeecre e e 20

4 Other Intermediate Data Manipulation Commands 22
W% R 203 0 B 1 0 U< TSRS 22
4.2. MOVE ANA OTAETuvvvvrriieeeiiiieiiiiieeeeeeeeeeeesiaare e e e e ceessasarereeeeeeeeenans 22
e T O Tt T 23
4.4. Calling a .do file from within a .do fileccccoeeeiviiiirciiieninen. 23

Exercise 2 Variable Manipulations (15 mins)........ccccceeeuen..... 25

5 Commands that change the shape of the data (merge; append,;

duplicates; collapse; expand; xpose; reshape)........cccccceeeeennnneee 26
oY B LS) OO PPPPTTTN 26
5.2, APPEIA ..ottt ettt e e e e e s e s tae e e e e aae e e e e abae e e e s araaeeenan 28
5.3. DUPLICALES ...ovveiiiiiiieeccieee et rr e e e s ra e e e e avae e e e eaes 29
5.4 COllAPSE cecinniiieiieeiteeeccte ettt eee e etre e e e e eare e e e e ba e e e e araaeeenans 30
LSR5 900 D54 0 1 s U KPS OSSR 31
5.0, X POSC e eeees 32

Stata: Data Manipulation and Analysis

5.7 RESNAPE ... 33
Exercise 3 Data Manipulations (25 mins)ccccceeeeeeeeeeennnes 35
5.8. Simple Regression ANalysiS.......cccccveeeeeeeeiieeecieeeeiieeeceeeesreeeesenenns 37
5.9. Post-Estimation Commands...........cccccoveevuvrreeeeeeeeeiiiiiinnnereeeeeeeeeennnns 37
6 APPENAICES....cceceeirririeieeeeeieeeeecirrrreeeeeeeeeeseeearrraeeeeeeeesesasnns 38
6.1. ANSWET'S 10 the EXEICISES ..uuvvvvrereeiiiiieiiiriiieieeeeeeeeeerrrrereeeeeeeeeseannnees 38
6.2. .do file for the SESSIONeuvvvvviieeeeeeeecee e 38
6.3. Variable LisSt.......ccceeiieiiiiicce e 50
6.4. Additional LIiteratureccccccveeeeeeieeeeeiiieeeeeeeeeeeeecrreeeeeeeeeeee e nnnenns 50

IT Services 4

Stata: Data Manipulation and Analysis

Software Used

STATA 13

Files Used

bhps_demo.dta

bhps sample file.dta
reshape data.dta
StataDataManipulation.do

Revision Information

Version Date Author Changes made
1.0 July 2008 Adam Whitworth & Created
Kate Wilkinson
1.1 Sept 2009 Neli Demireva Revised and updated
2.1 March 2013 Neli Demireva Revised and updated
2.2 July 2013 Ladislav Kozak Revised and updated
3.3 April 2015 Ines Rombach Revised and updated
Copyright

The copyright of this document lies with Oxford University IT Services.

Email:
courses@it.ox.ac.uk

IT Services 5

Stata: Data

Manipulation and Analysis

1 Setting up a New .do File: Keeping a Log and
Specifying Libraries Using Global Macros

The Stata: Introduction to Data Access and Management course introduced
working in .do files as opposed to working with Stata interactively, and outlined
that in order to keep a record of the syntax and to be able to replicate tasks in the
future it was advisable to work in .do files. However, the way we used .do files in
that course could have been improved by specifying the libraries to be used
throughout the syntax at the start of the .do file. This allows us to avoid typing the
whole file path each time we wish to open, save or merge a file. To open a new .do

file simply open [Stata) click the window of fhe “.do file editor’| and then
New .do file’.

1.1. Clear & set more off

Frequently, there are several things which are (or can be) done at the start of each
.do file to set it up. As an example, one of my own syntax files would start as
follows:

clear

set more off

clear just clears anything data that is already open: it creates a blank slate for the
current Stata session.

Set more off is a personal preference and lets the results window keep scrolling
down automatically when it fills up without being interrupted by the —more-
statement.

1.2. Capture log close

capture log close shuts down a log file if it is open at this time and this
ensures that you will be able to open a log at the start of this .do file without any
trouble. It is preferable to put this at the end of each do file if you remember but
some people put it at the start of each .do file instead.

capture log close

1.3. Keeping a log of the .do-file

IT Services

Next, it is a good idea to keep a log file of the session. First, you have to create a
folder in which the log can be kep, i.e. ‘Stata logs’. A log file is useful because it
keeps a complete record of all of the syntax and output that we get from the
analyses:

log using ///

Stata: Data

Manipulation and Analysis

"H:\StataLevel2\Stata logs\StataDataManipulation.log", replace

Note the .log ending (unlike .dta for data files in Stata and .do for .do files). The
, replace at the end just means that if a log file of this name exists in this folder
then write over it — this is useful if you are running the syntax for a project
multiple times as you refine the syntax, and you wish to simply the replacement
of the log file accordingly each time. The main option for log files is the append
option and this is used when you wish to tack a log file onto the bottom of an
existing log file. Now that the log is open everything which passes through the
results window will be saved to the log to give a complete record of the session
(both syntax and output) which can be used to check that the syntax has worked
as expected.

1.4. Annotations

Next you would probably want to give your .do file a title and date so you know
what it is and the date that changes were last made. We can annotate .do files by
surrounding text with

/¥ text */ and Stata ignores everything in between — it does not matter how many
stars there are but if you include slashes then the direction of the slashes should
be forwards as shown here. It is good practice to annotate all .do files throughout
the steps so that they make sense to you in the future (when you may well have
forgotten what you did and why) and so they make sense to others who may have
to read the syntax.

/* Stata: Intermediate Data manipulation and analysis */
/* 20 June 2014*/

Alternatively, annotations can be made by simply using * text, where * has to be
sued at the beginning of each line.

1.5. Global Macros

IT Services

Finally, during a syntax file (or you can think of this as a single Stata session) we
will typically want to pick up and save data from a few specific places. One option
is to write out the complete folder path each time we wish to use or save a file
throughout a do file, for example:

use "H:\StataLevel2\bhps household file.dta",clear

but this is likely to become tedious if we are using and saving many files as is
typically the case. Instead, global macros can be used at the start of each .do file
to set up library folders for the various file paths which will be used in the syntax
to either use or save data. It does not matter what you call your global macro but
it should only be a single word. Take the example from the above — its global
macro will be assigned as:

global raw "H:\StatalLevel2\raw data"

Once, the global macro is assigned, it is used by typing the dollar sign followed by
the name of the global macro: Stata understands this by reading whatever the
global macro is set to (in this case the folder paths). Macros (both global and
local) are very useful and one common usage of global macros is to set up

Stata: Data Manipulation and Analysis

IT Services

libraries at the start of a syntax file - this saves us having to write out a file path
every time we open, save or merge a file.

It is a good idea to keep your folders tidy so that it is obvious which file is which
and what are the most recent versions of everything. One common way of
working is to use separate folders for logs & syntax files, raw data files, working
files, and final data files.

*raw data folder

global raw "H:\StataLevel2\Raw data"

*working files folder

global work "H:\StataLevel2\Stata data\Work"

*final data files

global final "H:\StataLevel2\Stata datal\Final"

Note that above we could, if we wanted to, specify a global macro for the folder in
which we wanted to save the log file, and then we could have called that global
macro to save the log file to that folder in the next line of the syntax. However,
this is not actually that useful in reality because we will likely only specify it once
(i.e. when we open the log on the next line) and so we may prefer just to type the
folder path in full for the log as we did above.

Your .do file is now ready to go and should look something like this:
clear
set more off

capture log close

log using "H:\StatalLevel2\Stata Data manipulation and
analysis.log",replace

global raw "H:\StatalLevel2\raw data"
global work "H:\StataLevel2\Stata data\Work"
global final "H:\StatalLevel2\ Stata data\Final"

use "Sraw\bhps household file. dta",clear

NB: Note that both work and raw folders should have been previously
created.

Stata: Data

Manipulation and Analysis

1.6. The current working file

IT Services

Similarly to other programmes, Stata has a concept of a “current working
directory” in which it stores the files we have been working upon.

It is important to ensure that files are saved in and accessed from the correct
location, to ensure the appropriate data is used and files are not overwritten
accidentally. The ‘use’ and ‘save’ commands both require extensive directory and
sub-directory specification. The “cd” enables us to shorten the information
required when files are accessed and saved.

cd H:/name of folder

more specifically, if all the relevant data was stored under “H:\Data\Stata\”, this
could be specified as follows:

cd "H:\StataLevel2\"
Then, rather than accessing data using the full command:
use "H:\StatalLevel2\Raw data\bhps.dta", clear

we can take advantage of having specified a current working directory and access
data using a shortened version of the file path, only specified the subfolders and
file names within the working directory:

use "Raw data\bhps.dta", clear

Similarly, rather than using
save "H:\Statalevel2\Stata data\Final\bhpsl.dta"
data can be saved using the following command:

save “Stata data\Final\bhpsl.dta"

You can always display the working directory by typing:
pwd

Stata: Data

Manipulation and Analysis

2 Intermediate data manipulation commands in

Stata:

(egen; _n & _N)

2.1. Egen (extensions to generate)

Step 1

Step 2

IT Services

Egen (egenerate) is a very useful command with lots of different options. It is also
often helpful to combine egen with bysort in order to do analyses by group. Here,
we will work through some of the most common egen choices but there are
several others — the Stata manual and Stata Help outline these in detail.

This first example calculates the mean annual household labour income for the
households in the dataset (i.e. column sum of the labour income variable):

/*Reopen main working file*/

use "Swork\ bhps demo.dta", clear

/*egen mean: mean of the annual household labour income column*/

egen mean labinc=mean (inc lab)

The structure of the egen command is as follows. Literally, it is saying: make a
new variable called mean_labinc and make it equal to the mean of the
variable inc_lab (annual household labour income). What this will do
therefore is give every case the same value for this new variable.

The second case uses the total as opposed to mean (this particular example is just
an illustration):

/*egen total: column sum of annual household labour income*/

egen total labinc=total (inc lab)

This syntax tells Stata to make a new variable called mean_labinc and for each
case make it equal to the column total of the variable inc_lab in the dataset.
Other common uses of egen are:

/*row total - adding up all income components for each
household (i.e. each row of data*/

egen rowtotal labinc=rowtotal (inc*)

10

Stata: Data Manipulation and Analysis

/*returns minimum value*/

egen min labinc=min (inc_lab)

/*returns maximum value*/

egen max_ labinc=max (inc_lab)

/*median*/

egen median labinc=median (inc_lab)

/*rank*/

egen rank labinc=rank(inc lab)

/*standard deviation*/

egen sd labinc=sd(inc lab)

/*count number of non-missing cases*/

egen nonmiss_inc_ lab=count (inc_lab)

/*mean absolute deviation from mean*/

egen mdev_inc lab=mdev (inc_ lab)

/*median absolute deviation from median*/

egen mad inc lab=mad (inc_ lab)

Step 3 /*bysort egen mean*/

We may be interested in whether the mean annual household labour income in
London is likely to be different to the mean annual household labour income in
the North East or Midlands. Therefore, it may be useful to calculate the mean
annual household labour income for each region. This can be done either by using
the collapse command (shown in Section 3) or by combining egen with bysort.
The answers will be the same in each case. If the egen command is used with
bysort then a new variable is added to the existing data file and the variable
created takes the same value for each case within the same category of the by
group.

This example calculates the mean annual household labour income within each
region:

bysort region: egen reg mean labinc=mean (inc_lab)

or, equivalently,

IT Services 11

Stata: Data

Step 4

Step 5

IT Services

Manipulation and Analysis

bys region: egen reg mean labinc=mean (inc_lab)

In this example all people within the same region therefore take the same value
for mean labour income (given that it is the mean labour income of that region).

In order to have a feel of the new variable, codebook or describe it:
/* codebook for the new variable reg mean labinc */

codebook reg mean labinc

/*which are the regions with the highest annual household labour income and
which with the lowest */

tab reg mean labinc house type, col nofreqg

This final example below uses the rowtotal option to identify low-income
households (i.e. their income falls below 60% of the median income):

/* calculate total household income*/

egen tot hh inc=

rowtotal (inc_lab inc nonlab inc_pens inc bens inc_ inv)

This creates a row total of the variables included in the brackets. This is similar
to, but not always equal to, simply adding the variables because egen ignores
missing values when summing whereas writing

generate tot hh inc sum = inc_lab + inc nonlab...

would be equivalent when no missing values are contained in the variables.
However, if at least one observation is missing, the generate command would
calculate the result as missing.

Next calculate median income and create a binary variable (in this case,
unusually, a binary string variable) to identify households living above and below
median household income:

/* calculate median income*/

egen median hh inc=median(tot hh inc)

12

Stata: Data

Manipulation and Analysis

Step 6 /*identify households that live below a certain income threshold using a
string variable (lowincome)*/

gen deprived=""
replace deprived="lowincome" if ///

tot hh inc < (0.6*median hh inc) & tot hh inc !=.

replace deprived="Total income >= 60% of median" ///

if tot hh inc >= (0.6*median hh inc) & tot hh inc !=.

Here a string variable is created simply to demonstrate how string variables
(categorical variables) work but it is usually easier to work with numeric variables
rather than string variables where possible (you will have to destring string
variables for any analysis).

2.2. _nand _N

Step 7 /*

_n and _N are used to make lags and leads: they are useful but can take a bit of
getting used to. _n and _N do not exist as variables and it is not possible to see
them (unless you write something like gen n=_n) but Stata understands them in
the following way. _n refers to the observation’s row number; for example,
if an observation is on the top row in the dataset then _n=1, if it is ten rows down
then _n=10, and so on. _N refers to the total number of observations.
Therefore, in a dataset each observation has a unique value for _n (its row) but all
share the same value of _N (total observations in the data). Sorting the data in
different ways will therefore alter the value of _n but not the value of _N.

_n can be used in a relative and an absolute sense. In this first example _n is
used in a relative sense to work out the difference between each household’s total
income and the total household income of the household below it in the income
distribution. That command has very useful applications for example if you want
to conduct different quarterly comparisons, etc and provided that your data is in
wide format or that your long data format does not contain duplicate values.

sort by total household income to get the correct ordering of

households by total household income*/

IT Services

sort tot hh inc

gen prior diff = tot hh inc - tot hh inc[n-1]

In the relative sense above _n is used in relation to other rows around it (i.e. _n-
1 in this case, but we could just as equally write _n-2, _n-3, etc., or _n+1, _n+2,
etc. if necessary).

NB. Sometimes it might be easier to use Stata’s time-series operators:
L. (for lags); F. (for leads), D. (for differences) and S. (for seasonal
differences). Unlike the use of _n, time-series operators will never

13

Stata: Data Manipulation and Analysis

Step 8

misclassify the observation. Expressions such x[_n] — x[_n-1] could
be cumbersome and dangerous: consider the following example. You
have data from 1981, 1982, 1984 and 1985 with data for 1983 missing.
When constructing the lag with the [_n] expression, Stata will
assume that the lag of 1984 is 1982 and the first difference will
incorrectly span the two-year gap. The time series operator will not
make such a mistake. See Baum (2009) for further information.

_n can also be use in an absolute sense and this is done below to generate new
variables with values of the lowest and highest values of labour income in the
data:

/*calculate the lowest and highest labour income in the data*/
sort inc lab

gen min inc lab=inc lab[1]

gen max inc lab=inc lab[N]

The first generate command makes a new variable called min_inc_lab and sets
this equal to the value of inc_lab of the first row in the data. The second generate
command does the same thing with the last observation in the data — note that we
don’t need to work out what row that actually is because whatever it is it will be
equal to _N. Clearly, it is important that the data is sorted in the correct way
when using _n and _N, and you should be aware of missing values as these will
be the final numeric values of ascending sorted (i.e. sort) numeric variables.

It is also possible to combine using _n and _N with bysort introduced earlier —
this would be the case for instance if we wanted to know how many cases were in
each region (using _N with bysort) or if we wanted to identify the household in
each region with the lowest labour income (using _n==1 with by). If you are using
bysort with _n and _N then _n is understood as the observation row number
within the bygroup rather than within the whole dataset, and _N is similarly
understood as the total number of observations within each bygroup.

To work out how many observations in each region,

bys region: gen region cases= N

To identify the most deprived household in each region in the data according to
labour income,

Step 9 /*this sorts by region first and then orders the cases by income within
each region*/

IT Services

sort region inc lab

/*this then uses by (NB NOT bysort) with the sorted data to identify the first
case in each region — note here that the ‘by’ applies only to the region

14

Stata: Data Manipulation and Analysis

IT Services

variable (given that the previous sort has sorted by income within
region)*/

by region: gen region lowest income=1l if n==

These examples show the usefulness of _n and _N and their ability to be used in
both an absolute and a relative sense. It should be noted that it may often be
easier (and safer) to use bysort with egen instead of _n and _N in an absolute
sense. For example,

bys region: egen reg max inc = max(tot hh inc)
is easier and safer than

sort region tot hh inc

by region : gen reg max inc=tot hh inc[N]

15

Stata: Data Manipulation and Analysis

Exercise 1 Understanding the Egen Command and therole of _n & _N
(25 mins)

e Practice using the egen function

e Gain familiarity using_nand _N

e Use the car_data.dta dataset, which is saved in H:\StataLevel2\Raw data

Task 1
e Set up a global macro pointing to the raw data folder as described above.
e Open the car_data.dta set using the global macro you have created.

Hint: the relevant Stata code is described in section 1.5.

Task 2

e Use egen to create a new variable which equals the median value of all car
prices (price). Name this new variable price_median_egen.

Hint: the relevant Stata commands are described in section 2.1.
e Now try performing the same task with generate instead of egen.

Hint: first find out the median of the price variable. Do this by using the
detail option of the summarize command. Then generate a new variable
and set it equal to the median price as shown in the output window.

e Compare the two new price variables you created using the summarize
command. Are they different?

Task 3

e Use egen to create a total cost variable summing up the three cost
variables. Name the new variable cost_total_egen.

Hint: use rowtotal. You can use the describe command to find out the
variable names.

e Now try performing the same task with generate.

Hint: this requires using mathematical functions (+) to add variables
together and the generate command.

Compare the two new total income variables using the summarize
command. Are they different? If so why?

Hint: look at the number of non-missing observations available for both
variables.

Task 4

e Create a new variable that takes the value of the mean labour cost
(cost_lab) for domestic and foreign cars (foreign variable). Name this
variable foreign_mean_ cost_lab.

e This variable should take the same value for all domestic cars, and
another value for all foreign cars.

e Hint: perform this task by combining the egen command with bysort
e Which category has the lower mean labour cost?

Hint: you can find this information by tabulating the variables foreign
and the newly created variable foreign_mean_ cost_lab, or by looking at
the Data Editor.

IT Services 16

Stata: Data Manipulation and Analysis

IT Services

Task 5

Create a new variable which shows the total number of cars for different
headroom categories. Perform this task in two different ways:

-Firstly, do this by using the egen command, and call the new variable
headroom_ cases_egen. Make use of the count function.

-Secondly, do this by using the generate command, and call the new
variable headroom_ cases_gen. Make use of the _ N function.

Tabulate each new variable separately to find out the number of
observation within each category.

Hint: both methods should generate the same results. Information the
use of _n and _N can be found in section 2.2.

Task 6

Use _n to work out the difference between a car’s total cost and the total
cost of the next more expensive car. To do this use the cost_total_egen
variables you created in Task 2.

Hint: ensure that you have sorted the data by cost_total_egen first using
the sort command.

Note: an alternative is to use lags. For more information on lagged
variables see the Stata help documentation.

17

Stata: Data Manipulation and Analysis

3 Functions

There are many different functions and these relate to string, numeric, date and
other variable types. Many are very specific but it is worth having a look through
them. Some examples of functions are given here just to give a flavour of the ways
that functions work and to give an indication of the type of task they can be used
for. Searching on ‘functions’ in the help menu in Stata shows all the different
types of functions you can use.

3.1. Numeric functions

To create a new variable which is equal to the value of the highest of a number of
variables or numbers the max function is used:

gen max = max(inc_ lab, inc nonlab, inc_ inv)

Square root of number or variable uses the sqrt function:

gen sgrt = sqgrt(inc_lab)

Rounding is commonly needed. To round to the nearest whole number

gen round inc = round(inc lab, 1)

and rounding to one decimal place would be

gen round inc3 = round(inc lab, 0.1)

3.2. Random number functions

IT Services

uniform is used to make random numbers in Stata. uniform() returns
uniformly distributed pseudorandom numbers on the interval 0,1.

If you wish to make pseudorandom numbers over a range a to b rather than o to 1
then the syntax is:

gen newvar = a + (b — a) * uniform()

and to make random integers over the range a to b:

gen newvar = a + int((b - a) * uniform())

So, for example, to make a variable called new equal to a variable called old plus
or minus some integer value within the range of -5 to +5 we would type:

gen new = old + (-5 + int((5 - - 5) * uniform()))

18

Stata: Data

Manipulation and Analysis

It is often the case that whilst we wish to use a random number in syntax we also
wish to be able to rerun the syntax again in future and be able to get the same
random number — and hence the same results — each time the syntax is run.
uniform() can be seeded with the set seed command — this is helpful when the
syntax will be rerun as it ensures that the same random numbers will be
generated for each case in the future, thus ensuring the same results can be
reached again. To do this we simply set the seed prior to the use of uniform:

set seed 3

gen new = old + (=5 + int((5 - - 5) * uniform()))

seed does not need to be 3 — it can be any number. What is important is that prior
to running the uniform() function Stata will set the seed to the same number
each time — setting the seed does not affect the randomness of the uniform()
function but allows results to be replicated each type the syntax is run.

3.3. String functions

IT Services

As with functions generally, there are many string functions and here only those
which we have had need to use most commonly are presented. Three particularly
useful string functions are trim, substr (substring) and subinstr (subinstring).

The trim function deletes leading and trailing blanks from string variables — this
is particularly useful when merging with string variables and when the merge is
not working as you expect. Common reasons are blanks either at the start, within
or at the end of either of the string variable — trim and subinstr (below) combined
deal with this. The trim function is easy to use — here we make a new variable
which has trimmed any blank string characters from the front and back of the
region variable, creating a new variable (int_place_trimmed) and leaving the
original untrimmed variable intact (int_place):

generate int place trimmed=trim(int place)

The substr function allows you to make a new variable based on some part of an
existing variable:

/*substr*/

gen deprived=substr (lowincome,1,1)

The syntax structure is as follows. Make a new variable called deprived using the
substr function. In the brackets, we stipulate what the values of the new variable
should look like. There are three elements to specify: first, the variable that the
new variable is to be based on (lowincome); second, at what point in this variable
to start making the new variable from (in this case from the first character); third,
how many characters to read from this starting point. Therefore, as ‘lowincome’
takes the values “lowincome” or “above10000” then ‘lowincome2’ will equal “1” or
“a” (i.e. based on lowincome, starting at the first character, and reading one
character). The second option in the brackets can be a negative number and this
will read the stated number of characters from the end of the original variable
rather than from its start.

19

Stata: Data

Manipulation and Analysis

This can be used to, for example, to perform a function only on cases where the
interview month begins with a certain letter. For example, this can be useful if we
have a list of unique area codes which all begin with “E” if they are in England
and “S” if they are in Scotland: we could use substr to only keep cases where the
first letter is an “E” for instance if we were only interested in English cases. In this
dataset we might decide (though in reality it seems unlikely!) that we are only
interested in people interviewed in their ‘office’ or ‘other place’ (i.e. not home).
We can identify these cases with the following;:

gen int place o=1 if substr(int place,1l,1) == “0o”

Subinstr works similarly except that this function replaces each occurrence of a
character within a string variable with a different character. The syntax is as
follows:

gen newvar=subinstr (oldvar, "old text","new text",no of instances)

One common use of this command is to remove spaces in text in a string variable
and to remove leading and trailing blanks. For example, if the value for deprived
was written as “Above 10000” and we wanted it to be written as “Above10000”
then subinstr could be used to achieve this as follows:

gen deprived3 = subinstr (deprived," ","",1)

What this syntax will do is to look at the variable specified (deprived) and replace
the character “ “ with the character “” the first time it encounters “ “ and only on
this occurrence (i.e. if the variable has two blanks in it then only the first one will
be removed). Naturally, “ “ and “” can be any characters. If we were not certain
that there would always be a maximum of one blank then we could change the 1
to some higher value to be sure that the syntax changed all occurrences of blank
spaces.

3.4. Tostring and destring

IT Services

These two commands are used to convert numeric variables into string variables
(tostring) and, inversely, to convert string variables to numeric variables
(destring).

For example, assume that the first 3 digits of the hhid variable related to the area
in which the household was located and what we wanted to do was to create a
new variable equal to this area code. We can do this using the string functions
outlined above but first we need to convert the hhid variable from a numeric to a
string variable using the tostring command:

tostring hhid, gen(hhid string)

In this syntax we first specify the variable we wish to convert (hhid) and then we
specify the generate option and state the name variable we wish to create

20

Stata: Data

IT Services

Manipulation and Analysis

(hhid_string). Using this syntax the original variable (hhid) remains untouched
and a new string variable is simply created: hhid_string is a string variable which
is identical to hhid except that it is not numeric. We could now use the substr
command to make a new variable equal to the first 3 characters, first trimming
out any leading string blanks to be safe:

gen hhid string2=trim(hhid string)

gen hhid area=substr (hhid string2,1, 3)

Now we can use destring to make this a numeric variable, and notice that because
we are happy to write over this variable we use the replace rather than the
generate option as in the example above:

destring hhid area, replace

21

Stata: Data

Manipulation and Analysis

4 Other Intermediate Data Manipulation
Commands

4.1. Rename

In the Stata: An introduction to data access and management course, the
rename command was introduced to change the variable names of existing
variabels:

rename old name new_ name

The command can be extended to rename several variables at the same time, in
the same command line:

rename (old namel old name2) (new namel new nameZ2)

The command can also be used to change parts of variable names, and be used to
change several variables simultaneously. For this, * and ? can be used as
wildcards, where each ? represents exactly one variable, and * can represent zero
or more variables.

For example, if we wanted to change the name of all variables beginning with
inc_ (i.e. inc_total, inc_lab etc.) to start with income_ (i.e. income_total,
income_lab etc.), the following code could be used:

rename inc_* income *

The following command removes inc__ if it has been used anywhere in a variable
name (prefix, midfix, suffix):

rename *inc_ * **

In comparison, the following command replaces the jan’ with ‘January’ only in
variable names that have exactly one character in front of, and one character
behind the jan’ component of the variable name:

rename ?jan? ?January?

Typing ‘help rename group’ into the Stata command window will show other
available option for the rename command.

4.2. Move and order

IT Services

It is often desirable to reorder the variables within the dataset for some reason,
and there are three commands which can do this.

If we wanted to pick up one variable and move it to a particular place in the
dataset then move will do this for us. For example, let’s assume that we wanted to
move the tenure variable to now be the second variable in the dataset. To do this
we would type:

move tenure int day

22

Stata: Data

Manipulation and Analysis

In this syntax move relocates variable one (tenure) to the position of variable two
(int_day — the second variable in the dataset) and shifts the remaining variables,
including variable two (int_day), to make room.

Alternatively we can accomplish the same thing by simply using order. For
example we would type:

order tenure, before (int day)

This newer Stata syntax, simply states that we want to place tenure before
int_day.

order is used either to bring variables to the front of the dataset or to specify the
exact order in which a list of variables are to appear in the dataset. The variables
specified are moved, in order, to the front of the dataset. Hence,

order rooms hhcost hhvalue toilet* hhsize age

places these variables at the start of the dataset in the order listed, with all other
variables being moved along to make way for them. Where an asterisk is used (as
in the case of toilet*) then all of the variables picked up (in this case
toilet_indoors and toilet_shared) remain between themselves in the same order
as they originally appear and are moved as a group to the new position.

order all, alphabetic

alphabetizes all of the variables specified. Finally, it should be noted that the
order command has recently received additional useful options. As is the case for
all Stata commands, these options are described in the help file by typing “help
order” in the command menu.

4.3. Erase

The erase command erases data files — it can be useful in syntax files if lots of
temporary files are made for some reason which can then be deleted after they
have served their purpose if space on the hard drive is an issue. It is a simple
command to use. This example erases the file we have just made:

/**Erase files**/

erase "$Swork\Stata level 2 working file two.dta"

4.4. Calling a .do file from within a .do file

IT Services

Should you wish to, it is possible to call another .do file to run from within an
existing .do file and this is very simple to do. This can be useful if your first .do
file runs out of space (it would need to be an extremely long .do file though) or,
for example, you wish to run different long .do files of syntax following branching
‘if’ statements.

23

Stata: Data Manipulation and Analysis

To call a new .do file simple type the do command followed by the location of the
.do file to run:

do “H:\StataLevel2\logs & syntax\new do file.do”

On encountering this in the original syntax file, Stata will begin running the
specified .do file and, once this is completed, will continue from that point
onwards in the original .do file.

IT Services 24

Stata: Data Manipulation and Analysis

IT Services

Exercise 2 Variable Manipulations (15 mins)

Practice how to move and order variables

Practice basic data manipulation commands

Gain familiarity with the destring and tostring functions

Use the car_data.dta dataset, which is saved in H:\StataLevel2\Raw data

Task 1

Create a new variable called cost_mat_1d. This variable should take the
values of the material cost variable (cost_mat), but is rounded to one
decimal place.

Create a new variable called cost_mat_od. This variable should take the
values of the material cost variable (cost_mat), but is rounded to zero
decimal places.

Hint: Details of the relevant Stata command are provided in section 3.1.

Task 2

Create a new variable (make1) which is equal to the first three characters
of the string variable make.

Hint: You will need to use the substring function. Details of the relevant
Stata command are provided in section 3.3.

Task 3

Often, the data you will receive may not be in the appropriate format for you to
work with:

Display summary statistics of the weight variable

Hint: you will receive an error message: the required output cannot be
generated. Check what format the variable is in.

Transform the weight variable into numeric format (generate a new string
variable called weight_num).

Hint: You will need to use the destring function. Details of the relevant
Stata command are provided in section 3.4.

Look at the error message displayed in the output window.

Look at the weight variable in the Data Editor. Replace the observation
that is not a number with a missing value (for text, missing values are
defined as “”, i.e. empty quotation marks).

The destring command should now work.
Finally, display summary statistics of the weight_num variable.

Task 4

Use rename to change cost_lab and cost_mat (and all other variables
starting with cost_) to ¢_lab, c_mat etc.

Hint: Details of the relevant Stata command are provided in section 4.1.

Task 5

Bring the cost variables (now starting with c_) towards the front of the
dataset so that they are the next variables after the make variable.

Hint: Details of the relevant Stata command are provided in section 4.2.

25

Stata: Data

Manipulation and Analysis

5 Commands that change the shape of the data

(merge; append; duplicates; collapse; expand; xpose; reshape)

5.1. Merge

IT Services

The merge command is used to add variables from one dataset into another
dataset where they share a common characteristic (e.g. they relate to the same
person, household or area). This can be imagined as extending the dataset
sideways by adding new variables. The two datasets involved in the merge have
names in Stata: ‘master’ and ‘using; dataset. When merge is used one dataset is
open and this is the ‘master’ data. Data from a second dataset (in memory) is
merged into the master data and this second dataset is called the ‘using’ data.

It is possible to just stick two datasets together without a linking variable (i.e. add
the first row of data from the using dataset to the first row of data in the master
data), but this is unusual and risky. Typically, merge works by merging according
to a common link variable (or variables) which identifies the case in both the
master and using data — both the master and using datasets must be sorted by the
link variable(s) immediately prior to the merge.

There are several types of merge to choose from but the three most popular are
(1:1; m:1; 1:m). 1:1 stands for one-to-one merge and means that each particular
value of the link variable occurs only once in the master dataset and only once in
the using dataset (i.e. it is a unique observation in both); m:1 means many-to-one
merge and happens when the value of the link variable occurs multiple times in
the master dataset but that it occurs only once in the using dataset; 1:m means
one-to-many and happens when each value of the link variable occurs once in the
master dataset but multiple times in the using dataset. Most merges tend to be
either 1:1 or m:1. It is possible to run the merge without specifying what kind of
merge it is — this is usually safe to do as Stata would give you an error if not - but
it is good practice to be clear about what kind of merge you are doing and to
therefore specify this.

To illustrate this, imagine the two (admittedly small) datasets below, the master
dataset being on the left and the using dataset being on the right. This example
merges individual’s ages onto their names and as the link variable (the
individual’s id) occurs only once in both master and using datasets it can be seen
that this is a 1:1 merge:

id name id age
1 John 1 23
2 Mary 2 14
3 Sharon 3 46
4 Kevin 4 67

In this second example, below, in the master data there is household number, the
area the household is in, and the population of that area. Note that area 2 appears
three times in the master data as three households within this area are in the

26

Stata: Data Manipulation and Analysis

IT Services

data. We want to merge in the area unemployment rate. Note that in the using
data lookup table area 2 appears only once. This cannot therefore be a unique
merge because area 2 is not unique in the master data. Rather, this is a m:1 merge
because the values of the link variable ‘area’ are not unique in the master dataset
but are unique in the using dataset. What will happen is that the area
unemployment variable will be merged onto all instances of area 2 which occur in
the master data, therefore giving both household 45 and household 46 the value
of 10 for area_unem.

hh area area_pop area area_unem
45 2 150 2 10

46 2 150 4 7

79 2 150 5 5

126 5 350

As an example, assume we want to summarise the income data we have in our
working file by region. Let’s drop the region variable from the file and pretend we
don’t have it and need to merge it in:

drop region

Since we now do not have a region variable in this file we need to merge in the
region variable from the BHPS sample file (also in the raw data folder) before we
can carry out any analyses by region. To do this we merge the master data with
the using dataset in which the region variable is located (bhps sample file.dta),
specifying the link variable which (in this example uniquely) identifies the
observations in both datasets (hhid):

/*Open main dataset and merge region variable from bhps
sample file with hhid as the link variable for the merge*/

use "Sraw\bhps demo.dta", clear
drop region

/*a file that for example does not contain the wvariable
region*/

merge 1:1 hhid using "S$Sraw\bhps sample file.dta”

Note the syntax structure: the merge command comes first and this is followed by
the type of merge that is going to be performed, 1:1 in our case. Then, the link
variable(s) which Stata is to merge by is specified, followed by the path for the
using dataset using the global macro raw that we set up at the start of the syntax
file to identify the correct folder that the data is in (or just the correct path). With
the 1:1, m:1 and 1:m, data does not need to be sorted beforehand.

In addition to merging in the variables in the using dataset, after each merge
Stata creates a new variable called _merge. This is a useful variable for checking
that the merge and the matching has worked properly and it is advisable to

27

Stata: Data

Manipulation and Analysis

analyse this variable after each merge, either by running tab _merge or by
opening up the browse window, sorting by _merge and checking the values or
just list the data. _merge can take values of 1, 2 or 3. If for an observation in the
data the link variable (in this example hhid) existed in the master data file only
then _merge will equal 1; if for an observation the link variable existed in the
using data file only then _merge will equal 2; if for an observation the link
variable existed in both the master data file and the using data file then _merge
will equal 3. Often this _merge variable is used to discard unnecessary
observations, for example, if you only wanted to keep observations that are in
both the master and using files (e.g. keep if _merge==3). In our example
therefore if an observation has _m==1 then we know about their household
characteristics but not about which region they are in; if _m==2 we have a region
variable for the household but we do not actually have that household’s
characteristics in the main data file; observations with _m==3 have both the
characteristics and the region variable as they appear in both files.

Let’s assume we are interested in regional analyses and so only cases for which we
have characteristics and a valid region variable will be any use, so only keep
these:

/*keep only those observations which had non-missing values
i.e. merge==3*/

keep if m==

It is also possible to merge on more than one common link variable, for instance
when the data has individuals within households and where we therefore need
both the household and the individual variables in order to uniquely identify
individuals. Therefore, if we wanted to merge using a unique individual identifier
we would have to use both the household and individual identifiers as the link
variables.

5.2. Append

Whilst merge adds variables to the side of a dataset, append adds cases to the
bottom of a dataset. In order to do this correctly the variables need to have the
same names in both files. Append is a simple command to use — data does not
need to be sorted and it is not necessary to append by any link variable as we are
simply tacking cases with shared variable names onto the bottom of the dataset.
In order to demonstrate the append command we will take the first 100 cases
from our working file, identify them with a new variable, and append them back
into the bottom of the file (so that they appear twice in the file).

use "Sraw\bhps sample file.dta", clear

Next, take the first 100 cases, make the variable append_ flag and set it equal to
one for these cases. Save this as a separate file to append:

keep in 1/100

*make a variable to show this observation is from the append file

gen append flag=l

IT Services

28

Stata: Data

Manipulation and Analysis

*save for append

save "Swork\data for append.dta",replace

Next, open the main working file we saved above and append in the data just
saved:

use "Sraw\bhps sample file.dta", clear

append using "$work\data for append.dta"

Sort by the append variable and analyse the results of the append/
sort append flag

All of the other variables except append_flag had the same variable name as
existing variables and so just slotted on to the bottom of these variable columns.
The append_ flag variable was the only variable which did not exist in the master
data and so Stata has added this as a new variable in the data and given a value of
missing to all of the cases in the master data file as these did not previously
contain this variable. As missing is the highest numeric value, the 100 cases we
appended come to the top of the data when the data is sorted by the append_ flag
variable.

5.3. Duplicates

IT Services

‘Duplicates’ is a data manipulation command rather than one which changes the
shape of the data but it can be used after append and so we discuss it here. The
100 cases just appended to our original file are now duplicated within this
dataset, enabling us to show the duplicates command. The duplicates command
can be used to identify (tag) or to remove (drop) duplicate cases (it can also do
other things besides these but these are common uses). If we wanted to know
which cases (i.e. observations of hhid) were duplicates then we could write:

duplicates tag hhid, gen(dup flag)

This would count up the number of duplicate cases of each observation. Hence,
unique cases would take the value zero for the dup_flag variable, cases with one
duplicate case would take the value one for dup_flag, and so on.

Alternatively, we could use the duplicates drop option to automatically drop these
cases. It is possible to ask Stata to look for duplicate values on more than one
variable and this is often safer because doing so only identifies (or drops) cases
with identical values for all of the specified variables. Therefore, if we had not
wanted to identify duplicates and then drop them as above but instead wanted to
simply drop them straight away if they were duplicates, and if we wanted to look
for duplicates across multiple variables in order to be safe, then the syntax would
be:

duplicates drop hhid int day int month, force

29

Stata: Data

Manipulation and Analysis

The syntax starts with the duplicates command and we then tell Stata what we
would like to do with any duplicates — in this case we want to drop them. Next we
tell Stata within which variables to search for duplicates. In this case we use three
variables: hhid (household id), int_day (day of interview) and int_month (month
of interview). What we are saying to Stata is that if there are cases which have
identical values for hhid, int_day and int_month then we are assuming that they
are duplicates of the same case and that only one of them should be kept. The
force option is required to tell Stata that we are aware that we will lose data by
doing this. It can be seen in the output window that Stata tells us that 100 cases
have been deleted — the 100 cases that we appended in to the data.

Note then that running duplicates tag hhid and then dropping cases with the
value one for the resulting ‘tag’ variable is not identical to running duplicates
drop hhid: in the former instance all cases which have duplicates are deleted
(leaving none of these cases in the dataset) whilst in the second instance ‘copies’
of the case are deleted but one of the cases remains in the dataset.

It is necessary to be careful when using this command — if for instance we just
wrote

duplicates drop int month, force

then Stata would drop an awful lot of data (it would keep only the first occurring
case of each int_month in the dataset) and this would almost certainly be an
error in our syntax!

Now that these 100 duplicate cases have been deleted the append_flag variable
can be dropped:

drop append flag

5.4. Collapse

IT Services

At this point we have a data file of cases in England with a simplified region
variable merged in. The data are at household level but what if we wanted to look
at the data at regional level? This could be done using egen with bysort as shown
earlier. Another way this could be done is to use the collapse command to
collapse the data to region-level rather than the household-level that it is
currently at. Assume that we do want to collapse the data to region-level and that
we want it to contain:

i) the total number of households in that region

ii) total_mortgage (total_mortgage)

iii) average monthly mortgage payment (monthly_mortgage)

30

Stata: Data

Manipulation and Analysis

To do this the syntax would be:

collapse (count) hhid (mean) ///
total mortgage monthly mortgage, by (region)

Collapse uses three main options — mean, sum and count. Be careful: mean is the
default option and so if you do not specify what kind of collapse you want the
Stata will give a mean of the variable(s) even if what you wanted were sums. In
this example we specify that collapse should for each region count the number of
cases of the hhid variable and give us the means for total _mortgage and
monthly_mortgage. The by option tells Stata what variable to collapse by — in this
case it is the categories of the region variable. This file is now at region level. Save
this file:

save "Swork\mortgage collapsed to region.dta",replace

5.5. Expand

IT Services

The expand command is used to copy existing rows of data or as part of the
process to create new rows in the dataset. It is not very often used and there may
well be safer ways to do what you want, but it is possible to use it to make new
observations if that is what you wish to do.

In our example above we will use expand to make a new row in our collapsed
regional dataset. In this new row we will then sort the data and use _n to
calculate the difference between the mean total mortgage in London and the
Midlands.

First, to present the example clearly only the two relevant cases of London and
the Midlands are kept:

keep if region==1 | region==4

Expand essentially copies existing rows of data, which is then often rest to
missing and some new data values placed into this new row.

The simplest way to use expand is to simply new cases which are equal to n
duplicates of the existing cases in the dataset, for example:

expand 2 (this makes one duplicate copy of each case in the original dataset)

expand n (this is therefore the generic syntax to make n-1 duplicates of each
case)

An alternative way to use expand is to specify the single case which you wish to
make copies of rather than making copies of all cases in the existing dataset. We
will use this type of expand in our example to make a new row of data equal to
case 1:

31

Stata: Data Manipulation and Analysis

expand 2 in 1

This syntax asks Stata to make 2 copies of row 1 and this results in the dataset
now having a new case (row 3) which is a duplicate of the case on row 1. It would
be perfectly possible to change this and to, for example, make a different number
of new duplicates rows of a different case:

expand 15 in 2

would for example make 15 new cases in the dataset which are all equal to case 2.

Now we will reset all of the values in this new row equal to missing data to be
avoid problems:

replace region=. if n==
replace hhid=. if n==
replace total mortgage=. if n==

replace monthly mortgage=. if n==

and then use the new row 3 to show the difference between the values in London
and the Midlands:

replace hhid = hhid[1] - hhid[2] if n==3
replace total mortgage = ///
total mortgage[l] - total mortgage([2] if n==3
replace monthly mortgage= ///
monthly mortgage[l] — monthly mortgage[2] if n==3
5.6. Xpose

IT Services

Xpose is the command to transpose data from columns to rows, or vice versa, and
it works just the same way as transposing data in Excel. It is a very easy command
to use. Let’s open the region-level file that we created by collapsing our household
level data and then transpose this:

use "S$work\mortgage collapsed to region.dta",clear

xpose, clear varname

All that is required is the command itself and then the clear option. The clear
option is required and this is to warn you that the original data file prior to the
transpose will be permanently lost (unless you have saved it prior to running
xpose). The varname option helpfully carries the variable names through to the
transposed dataset. The resulting dataset contains all the same information as the
original dataset except that the cases (i.e the regions) are now columns rather
than rows — region was in column 1 so regions are now in row 1, hhid was in
column 2 so this is now in row 2, and so on. Note that variable names are lost
during the transpose and so it is sensible to rename the variables after
transposing.

32

Stata: Data Manipulation and Analysis

5.7. Reshape

Finally, the command is used to change the shape of the dataset from long to wide
format, and vice versa.

By wide format what is meant is that each unit of analysis (e.g. people) have one
row of data and on this row are multiple observations which usually relate to data
for variables (e.g. income and savings) at different time points. For example, our
variables in a wide format could look as follows in the dataset:

/* wide format*/

Id incomeo3 | incomeo4 | incomeos | savings03 | savingso4 | savingsos
1 300 350 400 50 20 25
2 500 300 250 80 35 20

By long format what is meant is that the case (e.g. person) has multiple rows of
data, that there is a single variable called income in this example, and that each
year of income has a different row in the dataset. So, for example, the data above
could equally be presented in long format as follows:

/¥ long format */

id year income savings
1 03 300 50
1 04 350 20
1 05 400 25
2 03 500 80
2 04 300 35
2 05 250 20

IT Services

In order to demonstrate and explain this command we will use a small artificial
dataset of income and savings in different years for ten people:

use “Sraw\reshape data.dta”, clear

The dataset is currently in wide format. To reshape it to long format the syntax
would be:
i(id)

reshape long inc sav, J (year)

where ‘long’ specifies the type of reshape we wish to perform (i.e. the format we
wish to reshape t0), ‘inc’ and ‘sav’ are the variables to reshape (notice that suffixes
relating to years are not needed), ‘i’ relates to the unique identifier for each case
(e.g. person id) within which sub-observations (e.g. multiple income observations
over different years) fall. Note that j’ in the above example does not exist in the
wide format dataset but year becomes the 4§’ variable (i.e. that which identifies

33

Stata: Data

IT Services

Manipulation and Analysis

sub-observations ‘j’ within each case 1’) in the long format dataset. In order to use
reshape it is necessary to be able to identify what the 9’ and ‘4’ variables are.

In terms of the variables included in the reshape command, here our dataset
contains only variable relating to income (inc) and savings (sav) and these
variables are both included in the syntax. If there had been other variables in the
original dataset which we had not specified in the reshape command then these
variables would remain unchanged in the reshaped data format and would be
repeated.

To get back to a wide format after having reshaped the dataset to long format we
can simply type the opposite reshape command without arguments to get back to
the original dataset format, and this, in fact, does not need to be done
immediately after the initial reshape because Stata will remember what reshape
commands have been used previously in the session and will seek to reverse that:

reshape wide

Alternatively, if we had started with the data in long format and wanted to specify
the reshape to take it to wide format the syntax would be:

reshape wide inc sav, 1i(id) j(year)

If the 9’ variable is a string variable then the string option can be specified to deal
with this. For example, if we had data on husbands and wives (string variable ‘sex’
is the 9§’ variable) within households (numeric ‘hh’ is the ‘i’ variable) then the
syntax would be:

reshape wide inc sav, 1i(hh) Jj(sex) string

It is possible to have more than one ‘i’ variable where unique cases are nested
(e.g. patient id within hospital id, person id within household id). It is also
possible to have more than one ‘j’ variable — consider the case for instance where
households are the 4’ variable and both sex and year are the ‘j’ variables which
relate to the income variables in several years of male and female partners in the
household. Where there is more than one ‘4§’ variable there are many more
possible ways in which the data can be reshaped as both of the ‘j’ variables can be
set up in a long or wide format, and the reshape syntax is consequently slightly
more difficult to specify correctly in order to obtain the desired format. This is a
more advanced topic and is not dealt with here but the Stata manuals and help
menu cover this issue.

34

Stata: Data Manipulation and Analysis

Exercise 3 Data Manipulations (25 mins)

e Practice merging and appending datatsets

e Gain familiarity with identifying duplicates and collapsing data

Task 1

The file trial data contains data from a clinical trial. The treatment
allocations for the patients are saved in a separate file, trial_data_rand.
Both files are saved in "H:\StataLevel2\Raw data\.

Open both files separately using the global macro set up previously. Find
out what the unique patient identifier variable is called.

Task 2

Using the above identified variable, merge the information from both
datasets. Use trial _data_rand as the master set.

Considering the _merge variable, data for how many patients is available
in both datasets, and data for how many patients is only available in the
using dataset or the master dataset?

Hint: you can view this information directly from the merge output, or
you can tabulate the _merge variable. More information on Stata’s
merge command is provided in section 5.1.

Now try and use the append command to add the dataset trial_data to
trial_data_rand. The newly created dataset is not useful in this context,
but consider when you would need to use the append command.

Hint: Information on the append command is provided in section 5.2.

Task 3

IT Services

Tag duplicates of the patient identifier variable (id). Are there any
duplicates?

Hint: use the duplicates tag command. The number of duplicates can be
viewed by tabulating the variable generated in the command, or by
using the duplicates report command.

Information on Stata’s duplicates command is provided in section 5.3.
Check how many duplicates for the variable age there are.

Hint: use the command duplicates report.

Flag the duplicates for age (generate a new variable called dup_flag_age).
Use the tab age dup flag age command to show the number of
duplications per age.

35

Stata: Data Manipulation and Analysis

IT Services

Task 4

Use the collapse command to produce a file with the mean for the variable
studytime for each drug. Which drug has the lowest mean value for
studytime?

Hint: information on Stata’s collapse command is provided in section
5.4.

Note that we could have found the same result by running bys drug: egen
newvar = mean(studytime). The only difference is that with collapse
command the dataset is changed.

Extend the collapse command to also show the number of observations
within each drug group.

Hint: you need to read in the trial_data again, and merge it as above.
Use the count function to arrive at the number of subjects in each drug

group.

Task 5

Open the file reshape_ test

The dataset contains data on income and outgoings over three years.

Drop the variables sex and out2012, out2013, out2014 (these variables
provide information on monthly outgoings).

Reshape the data into long format, so that there is one variable for
income, and a new separate variable for the relevant years. Consider
carefully which variables you have to specify for the i() and j() options.
Use the full command (not a shortcut) to reshape the data into wide
format.

Hint: Information on Stata’s reshape command is provided in section
5.7. the gender variable can be ignored in the programming, it will be
reshaped automatically.

Consider the information provided in the output window. This
information is very useful in assessing if the command has worked as
desired.

The above reshape commands also work if you want to reshape more than
one variable.

Read the raw data in again. Programme the reshape commands as
described above, but this time reshape the income and outgoings variable.

36

Stata: Data

Manipulation and Analysis

5.8. Simple Regression Analysis

Let us make our first steps in running a linear regression of price of house on
number of rooms per house (you may want to first create a log of the house price
variable generate housevalue= log(hhvalue). We will use the regress command, which
lists the outcome followed by the predictors (we will have only one for the sake of
the exercise: number of rooms).

regress housevalue rooms

Source SS df MS Number of obs = 6284

FC 1, 6282) = 2697.24

Model 777.46104 1 777.46104 Prob > F = 0.0000
Residual 1810.74576 6282 .288243515 R-squared = 0.3004
Adj R-squared = 0.3003

Total 2588.2068 6283 .411938055 Root MSE = .53688
housevalue Coef. std. Err. t P>t [95% conf. Intervall]
rooms .2143517 .0041273 51.93 0.000 .2062608 .2224427
_cons 10.88504 .0215792 504.42 0.000 10.84274 10.92735

Note that the regression is based on only 6284 observations. Stata omits
observations that are missing the outcome or any values for one or combination
of the predictors. The number of rooms "explains" around 30% of the variation in
house prices in Britain. We also see that increase the number of rooms with one is
associated with an increase of 0.24 in log of house price.

Following a regression (or in fact any estimation command) you can retype the
command with no arguments to see the results again. Just type reg.

5.9. Post-Estimation Commands

A number of post-estimation commands can be particularly useful. Consider for
example predict, which can be used to generate fitted values or residuals following
a regression. The command

. predict newvar, xb
(option xb assumed; fitted values)
(314 missing values generated)

IT Services

generates a new variable of the predicted values for each observation. No
predictions are made individuals with lack of observations on the predictor
variables. (If the dependent variable was missing for an individual it would be
excluded from the regression, but a prediction would be made for it. This
technique can be used to fill-in missing values.)

37

Stata: Data Manipulation and Analysis
6 Appendices

6.1. Answers to the exercises

Solutions are provided at the end of the session.

6.2. .do file for the session

*Stata log for Stata data manipulation and analysis
clear
capture log close

set more off
log using "H:\StatalLevel2\Stata logs\StataDataManipulation.log", replace

/* Stata: Intermediate Data manipulation and analysis */

/* Date 05 Feb 2015 */
/*set libraries*/
/*raw data folder*/

global raw "H:\Statalevel2\Raw data"

/*working files folder*/
global work "H:\StatalLevel2\Stata data\Work"

/*final data files*/

global final "H:\StataLevel2\Stata data\Final"

/*files can then be opened as follows: */

use "Sraw\bhps household file.dta",clear

/* Accessing the working directory as an alternative: */

pwd

*set working directory:

cd "H:\StataLevel2\

/* Check working directory */

pwd

IT Services 38

Stata: Data Manipulation and Analysis

/* open a file within this directory: */

use "Raw data/bhps household file.dta",clear

/**

** Section 1: Intermediate data management commands

**/

/*open raw datafile*/

use "Sraw\bhps demo.dta",clear

/*1.egen mean: mean of the annual household income column*/

egen mean_ labinc=mean (inc_lab)

/*2.egen total: column sum of annual household incomes*/
egen tot labinc=total (inc_lab)
egen rowtotal labinc=rowtotal (inc*) /*row total*/
egen min labinc=min(inc_lab) /*returns minimum value*/
egen max_ labinc=max (inc_lab) /*returns maximum value*/
egen median labinc=median (inc_lab) /*median*/
egen rank labincl=rank(inc_lab), unique /*rank*/

egen sd labinc=sd(inc_lab) /*standard deviation*/

egen nonmiss_inc lab=count (inc_lab)

/*count number of non-missing cases*/

egen mdev_inc lab=mdev (inc_lab)

/*mean absolute deviation from mean*/

egen mad_inc lab=mad(inc_lab)

/*median absolute deviation from median*/

tab nonmiss inc lab

/*3. bysort egen mean*/

bysort region: egen reg mean labinc=mean (inc_lab)

/* codebook the new variable reg mean labinc */

codebook reg mean labinc

IT Services 39

Stata: Data Manipulation and Analysis

/*which are the regions with the highest annual

household labour income and which with the lowest */

tab region reg mean labinc, missing

save "S$work\workfile.dta"

/*4. bysort egen total income */

describe inc*
egen tot hh inc = rowtotal (inc_lab inc_nonlab inc _pens inc bens inc_inv)

codebook tot hh inc

/* are the results the same as : */

gen tot hh inc gen = inc lab + inc nonlab + inc pens + inc bens + inc inv

su tot hh inc gen tot hh inc

/* No, the results are not the same. gen cannot perform calculations when
at least variable is missing. egen treats missing values as 0 and still
generates results.

*/
/* what is the maximum value for each region */

bys region: egen reg max labincl = max(inc_ lab)

/**Final example (rowtotal)- identify low income households using a
string variable (low income equals those that are leaving with below 60%
of the median total income)**/

use "$raw\bhps_demo.dta",clear

/* step 1: calculate total household income*/

egen tot hh inc=rowtotal (inc lab inc nonlab inc pens inc bens inc inv)

/*step 2: calculate median income*/

egen median hh inc=median(tot hh inc)

/*step 3: identify high income households using a string variable */

gen deprived=""

replace deprived="lowincome" if tot hh inc < (0.6*median hh inc) ///
& tot _hh inc !=.

replace deprived="Total income >= 60% of median" ///

if tot hh inc >= (0.6*median hh inc) & tot hh inc !=.

IT Services 40

Stata: Data Manipulation and Analysis

codebook deprived

/************* n and N *************/
gen n=_n
gen N= N

drop n N

/** n in a relative sense - calculating income difference to next well

off household **/

/*sort the households in terms of total income*/

sort tot hh inc

/*drop those with tot hh inc == 0 as likely due to missing data */

drop if tot hh inc ==

/*now the data is sorted by income we can calculate the difference between
each household and the one below it in the income distribution*/

gen inc diff prior= tot hh inc - tot hh inc[n-1]

/** n in an absolute sense **/

/*calculate the lowest and highest labour income in the data*/

/* NB would be safer to use bysort egen min/max to do some of these */
sort inc lab

/* lowest in dataset */

gen min_inc_lab=inc_lab[1]

/* largest in dataset */

gen max_inc lab=inc lab[N]

/* lowest per region - note we sort by two variables but only generate by
one variable */
sort region inc lab

by region: gen reg min tot inc=inc lab[1l]

IT Services 41

Stata: Data Manipulation and Analysis

/* number of cases per region - note than when used with bygroups N
relates to the cases per bysgroup rather than the whole dataset */

bys region: gen reg cases= N

tab region reg cases

/* Identifying the most deprived household in the region according
to the labour income */
sort region inc_ lab

drop if inc_lab == 0 | inc_lab ==

/* identifying the observation with the lowest labour income per region */

by region: gen region lowest income=1 if n==

/* extract the information: */
di "List the lowest labour incomes per region"

list region inc lab if region lowest income == 1

/* be aware that it is often easier and safer to use bysort with egen
instead of n and N in an absolute sense */

bys region: egen reg max_inc = max(tot hh inc)

/* is simpler and safer than */
sort region tot hh inc

by region : gen reg max incl=tot hh inc[N]

/**

**Section 2: Functions

***/

*The Stata help function is able to produce a full list of all functions:

help functions
use "Sraw\bhps demo.dta",clear
/**** pnumeric functions ****/

/*Maximum value of a set of variables or numbers*/

gen max = max(inc_lab, inc _nonlab, inc_inv)

/*Square root of number or variable*/

gen sqgrt = sqgrt(inc_lab)

IT Services 42

Stata: Data Manipulation and Analysis

/*Round to the nearest whole number*/

gen round inc = round(inc_lab)
/* and rounding to 1 decimal place */
gen round incl=round(inc_lab, 0.1)

/* generating ages - need to be rounded down: */

gen round down = floor (inc_lab)
/**** random number functions ***x/

/* random number between 0-1 */

gen temp = uniform()

/*pseudorandom over a range a to b rather than 0-1:

gen newvar = a + (b - a)*uniform()*/
gen new = 5 + (15 - 5) * uniform()
su new

/* add a random whole number in range 5 to 15 to the temp variable */
/* NB 1. adding to an existing variable 2. int means random integers rather

than random psudonumbers */

gen new2 = 5 + int ((15 - 5) * uniform())

Su new2

*are these new variables reproducible?

* Compare

gen testl = uniform()
gen test2 = uniform()
gen test3 = uniform()
gen test4 = uniform()

su testl test2 test3 testd

/* set seed */
set seed 1408
gen testb = uniform()

set seed 1408

IT Services 43

Stata: Data Manipulation and Analysis

gen test6 = uniform()

su test5 testo6

/**** gstring functions ****/

/* trim */

generate int place trimmed=trim(int place)

/* making deprived to show substr function- ie below 60% median labour
income */

egen med inc=median (inc_lab)
capture drop deprived
gen deprived="Above 10000"

replace deprived="Lowincome " if inc lab < (0.6 * med inc)

/* trim - trim leading and trailing blanks*/

gen deprivedl=trim(deprived)

/*substr*/

gen deprived2=substr (deprived,1,1)

gen int place o=1 if substr(int place,1,1) == "o"

/*subinstr*/

/*gen newvar = subinstr(oldvar,"old text","new text",no of instances)*/
gen deprived3 = subinstr (deprived," ","",5)

*up to 5 blanks per variable are removed

gen int place?2 subinstr (int place,"f","F", 1)

gen int place3 = subinstr(int place,"f","F",2)

/*e.g. replace the first two o characters with X*/

gen deprived4=subinstr (deprived, "o","X",7)

/**other functions not covered in the course booklet include**/
/*reverse*/

gen deprived rev=reverse (deprived)

/*proper (ie capitalise)?*/

replace int place2=proper (int place2)

[*¥xFxxxxxxx tostring and destring *xxxxkx/

tostring hhid, gen(hhid string)

IT Services 44

Stata: Data Manipulation and Analysis

/* take off first three string non-blank characters for household area
variable,

then convert back to numeric variable */

gen hhid string2=trim(hhid string)
gen hhid area=substr (hhid string2,1, 3)

destring hhid area, replace

/***

** Section 3: Other intermediate commands

**/

use "$raw\bhps_demo.dta",clear
/* using rename to change variable names, or part of variable names */

rename emp employment

*change all variables beginning with inc_ to beginning with income

rename inc_* income *

*rename several variables at the same time:

rename (int month int year) (interview month interview year)
/* move, order and aorder - changing the position of variables in the
dataset */

use "Sraw\bhps demo.dta",clear
/* moving one variable to the location/ in front of another variable */

move tenure int day

*using order for same results:
use "Sraw\bhps demo.dta",clear

order tenure, before(int day)

/*ordering a list of variables to appear in order from the start of the

dataset*/
order rooms hhcost hhvalue toilet* hhsize
/* put all variables in alphabetical order */

order _all, alphabetic

/* save and show erase */

save "Swork\stata level working file to erase.dta",replace

IT Services 45

Stata: Data Manipulation and Analysis

/******* Erase files ************/

erase "Swork\stata level working file to erase.dta"

/**
** Section 5: Commands which change the shape of the data
**/

/********* Merge **********/

/*can do straight merge (ie Jjust slot them in sideways with obs 1 merging
with obs 1 of another dataset) but almost never do. Normally merge by
common variables (ie merge using) */

use "$raw\bhps_demo.dta",clear

drop region

/*we want to summarise variables at regional level, but in order to do this
we need to merge in the region variable we have just dropped from file
bhps sample file.dta*/

/*Merge region variable into the main working file*/
merge 1:1 hhid using "S$raw\bhps sample file.dta"

*bhps sample file contains only hhid and region

/*Analyse the merge variable which is created*/

tab merge

/*keep only those observations which had non-missing values i.e.
_merge==3%*/

keep if m==3

drop merge

/*save the file at this point for the append*/

save "Swork\bhps working file three.dta",replace

/********** Append *************/

use "Sraw\bhps sample file.dta", clear
/*keep the first 100 cases*/
keep in 1/100

/*make a flag to show this observation is from the append file*/

gen append flag=1l

IT Services 46

Stata: Data Manipulation and Analysis

/*save for append*/

save "S$work\cases for append.dta",replace

/*Reopen main working file and append. NB append under existing variable
columns where there are the same variable names, otherwise it will tack

new variables on the side. Append does not need to be sorted first*/

use "Sraw\bhps sample file.dta",clear
append using "Swork\cases for append.dta"
/*Sort by the append variable and analyse the results of the append*/

sort append flag

/*Now in this case we have taken the top 100 cases from this file and
appended them back into the same file, which clearly worked because
they have identical variable names. This means that 100 of the cases

are repeated and this allows us to show the duplicates command*/

/********** Duplicates **************/
duplicates report hhid

duplicates tag hhid, gen (dup flag)

*show that the correct observations were tagged:

tab dup flag append flag, miss

duplicates drop hhid , force

/* We can see that 100 cases are dropped, note too that the 'originals'
tagged with dup flag remain and only the 'duplicates' are dropped ie one of
the two is kept */

/*drop the append flag variable*/
drop append flag

*be careful when dropping duplicates!
use "S$raw\bhps demo.dta",clear

duplicates drop int month, force

use "Sraw\bhps demo.dta",clear

duplicates drop int year region , force

/************ collapse ***********/

use "$raw\bhps7demo.dta",clear

IT Services 47

Stata: Data Manipulation and Analysis

/*We now have a datafile of cases in england with a region variable merged
in. Say now that we want to create a new file at region level which
contains:

i) the total number of households in that region
ii) total mortgage (total mortgage)

iii) average monthly mortgage payment (monthly mortgage)

NB Be careful - mean is the default and below I state explicitly what

I want each time, even if it i1s mean*/

collapse (count) hhid (mean) total mort monthly mort , by(region)
*collapse can use a variety of statistics, see:

help collapse

save "Swork\mortgage collapsed to region.dta",replace

/‘k*** Xpose ***/
use "$work\mortgage collapsed to region.dta",clear

xpose, clear varname

/******** reshape *********/

use "Sraw\reshape data.dta", clear

/* reshape to long format */

reshape long inc sav, 1i(id) j(year)

/* revert back to original shape - does not need to be done immediately
after the reshape as Stata remembers within the session */

reshape wide

/* full syntax to reshape to wide format */

reshape wide inc sav, 1i(id) j(year)

/* if 'jJ' was a string variable */

tostring year, replace

reshape wide inc sav, 1i(id) j(year)

*code no longer works - need to tell Stata that j is in string format:

reshape wide inc sav, 1i(id) j(year) string
*other variables within the dataset:

use "Sraw\reshape data.dta", clear

gen num = n

IT Services 48

Stata: Data Manipulation and Analysis

reshape long inc sav, 1i(id) j(year)
/*Other variables are just being repeated when transforming from wide

into long format */

/***

** Section 6: Simple regression commands
**/
use "Sraw\bhps household file.dta",clear

regress monthly mortgage rooms

/* Just a demonstration of the regress command - the model may not be

statistically appropriate */

predict newvar, xb

/*genereates newvar, which takes the value of the linear prediction - i.e.
the value the model would calculate given the explanatory variables in the
model

IT Services 49

Stata: Data Manipulation and Analysis

6.3. Variable List

storage display value

variabTle name type format Tabel variable Tabel

hhid Tong %12.0g household identification number

int_day byte %8.0g day of interview

int_month byte %9.0g month month of interview

int_year int %8 .09 year of interview

house_type byte %20.0g hh_type type of accommodation

rooms byte %8.0g number of bedrooms

tenure byte %20.0g tenure house owned or rented

hhvalue Tong %12 .0g value of property: home owners

hhcost Tong %12 .0g original purchase price of
property

monthly_mortg~e 1int %8 .0g last total monthly mortgage
payment

toilet_indoor byte %8.0g Too_in accom: has indoor toilet

toilet_shared byte %8.0g Too_sh accom: is indoor toilet shared

garden byte %8.0g gdn accom: has terrace/garden

total_mortgage Tong %12.0g total mortgage on all property

exp_food int %8.0g toE§}1month1y food and grocery
i

vehicle_access byte %8.0g veh_acc car or van available for private
use

car_own byte %22.0g car_own household member owns vehicle

car_value Tong %12.0g value vehicle(s) Tless amount
outstanding

hhsize byte %8.0g number of persons in household

kids byte %8.0g number of children in household

pens byte %8.0g number over pensionable age in
household

emp byte %8.0g number in employment in household

wage byte %8.0g number in household of working
age

inc_lab doubTle %10.0g annual household Tabour income

inc_nonlab double %10.0g annual household non-labour
income

inc_pens double %10.0g annual household pension income

inc_bens double %10.0g annual household benefit income

inc_inv double %10.0g annual household investment
income

int_place str6 %9s interview location

int_dur float %9.0g interview duration

age float %9.0g

region byte %13.0g region RECODE of regioncode (region /
metropolitan area)

hh_weight doubTle %10.0g oxhwtuk?2 household weight within uk
estimates

6.4. Additional Literature

Baum, C. (2009). “An Introduction to Stata Programming”, Stata Press Publication

Long, S. and Freese, J. (2006). “Regression models for categorical dependent variables using
Stata”, Stata Press Publication

Stata Online Channel:
http://www.youtube.com/user/StataCorp/?utm_source=MailingList&utm_medium=email&
utm_ content=20121010+Training+YouTube

IT Services 50

Stata: Data Manipulation and Analysis

Ines Rombach
courses@it.ox.ac.uk

IT Learning Programme

21/10/2015

Today’s arrangements

Your teacher is Ines Rombach

Your demonstrators are

We finish at

You should have Class notes
Copies of slides

Your safety is important

Where is the fire exit?

Beware of hazards:
Tripping over bags and coats

Please report any equipment faults to us
Let us know if you have any other concerns

Your comfort is important

21/10/2015

The toilets are along the corridor outside the
lecture rooms

The rest area is where you registered;
it has vending machines and a water cooler

The seats at the computers are adjustable

You can adjust the monitors for height, tilt and
brightness

Objectives for today’s course

Be able to:

set up libraries within Stata
use egen functions
understand the role of _N and _n

perform a variety of data manipulations using
Stata functions

use by groups effectively

recode string into numeric variables and vice
versa

merge, append and reshape data

Review: Conditional Statements

or

Equal | Not |Greater| Less |Greater| Less | And or
to(2= | equal | than | than |thanor |thanor
signs) | to equal | equal
to to

21/10/2015

1:1 Merge

M : 1 Merge

Reshape

21/10/2015

.

1T

courses@it.ox.ac.uk

services

