
R Object Oriented Programming

Robert Stojnić rs550@cam.ac.uk

Laurent Gatto lg390@cam.ac.uk

Cambridge System Biology Centre
University of Cambridge

Last update: April 2016

Stojnić and Gatto (CSBC) 1 / 77

rs550@cam.ac.uk
lg390@cam.ac.uk

General overview

R object-oriented programming – in details; after this, you should be
able to tackle more complicated OO designs.

Prerequisites

good knowledge of R (data types, functions, scripting ...)

object-oriented programming knowledge helpful but not essential

Stojnić and Gatto (CSBC) 2 / 77

Plan

1 Course introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 S4 object oriented framework

5 S3 object oriented framework

6 S4 Reference Classes

Stojnić and Gatto (CSBC) 3 / 77

Plan

1 Course introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 S4 object oriented framework

5 S3 object oriented framework

6 S4 Reference Classes

Stojnić and Gatto (CSBC) 4 / 77

Course introduction

Course agenda

Object-oriented programming in R : S3 and S4 class systems

Package development in R : creating and documenting packages

Other advanced topics: testing, debugging, profiling, C/C++
interface, parallel computation

Objectives

By the end of the course you should have created a working package
written in the S4 class system.

You should be able to use the code as a template for your own work. Our
example has been chosen for demonstrative purposes.

Stojnić and Gatto (CSBC) 5 / 77

Course working example: ”sequences” package

Working example

We will make a simple package to handle sequence data.

This package will be able to load a FASTA file and based on sequence type
do some operations, like finding the sequence length or reverse sequence.
For simplicity we will manipulate single sequences only.

UML class diagram for the ”sequences” package

Stojnić and Gatto (CSBC) 6 / 77

Plan

1 Course introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 S4 object oriented framework

5 S3 object oriented framework

6 S4 Reference Classes

Stojnić and Gatto (CSBC) 7 / 77

Basic R functions (size reflects frequency of usage)

Stojnić and Gatto (CSBC) 8 / 77

Defining functions in R

Simple function with 4 arguments:

> # Function to calculate area of rectangle

> area <- function(x1, y1, x2, y2){
+ abs(x2-x1) * abs(y2-y1)

+ }
> area(0, 0, 5, 5)

[1] 25

Special argument ”...” for any:

> # Plot with a message before the plot

> plotMsg <- function(x, y, ...){
+ cat("Plotting", length(x), "data points!\n")
+ plot(x, y, ...)

+ }

Stojnić and Gatto (CSBC) 9 / 77

Output of plotMsg()

> plotMsg(1:10, 1:10, main="My plot")

Plotting 10 data points!

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

My plot

x

y

Stojnić and Gatto (CSBC) 10 / 77

Useful R function 1/2

readLines() - reads raw lines of text from a file
nchar() - gives number of characters in a string
> nchar("Some text")

[1] 9

strsplit() - split a string by some separator
> strsplit("Some text", " ")

[[1]]

[1] "Some" "text"

> strsplit("Some text", "")

[[1]]

[1] "S" "o" "m" "e" " " "t" "e" "x" "t"

unique() - unique elements of a vector
> unique(c(1, 1, 2, 2, 3))

[1] 1 2 3

> unique(c("a", "b", "a"))

[1] "a" "b"

Stojnić and Gatto (CSBC) 11 / 77

Useful R function 2/2

grep() - find which elements of vector match regular expression

> grep("[AT]+", c("CGC", "TAT", "TATCATA"))

[1] 2 3

sub() - replace matches to regular expression

> sub("[AT]+", "-", c("CGC", "TAT", "TATCATA"))

[1] "CGC" "-" "-CATA"

chartr() - translate a string by replacing individual characters

> chartr("TA", "AT", "TATCTA")

[1] "ATACAT"

rev() - reverse ordering in a vector

> rev(c("TAT", "ATT", "TTT"))

[1] "TTT" "ATT" "TAT"

paste() - concatenate variables into a string representation

> paste(c("A", "T", "A"), collapse="")

[1] "ATA"

Stojnić and Gatto (CSBC) 12 / 77

Lists in R

List is a data structure that can hold a vector of any other variables.

> x <- list(a=10, b="text")

> x$a

[1] 10

> x[["b"]]

[1] "text"

> x[[1]]

[1] 10

> names(x)

[1] "a" "b"

Stojnić and Gatto (CSBC) 13 / 77

Everything in R has a class

Everything in R has a type - in object oriented programming called a
class.

> class(c(1, 2, 3))

[1] "numeric"

> class("Some text")

[1] "character"

> class(matrix(0, nrow=10, ncol=10))

[1] "matrix"

> class(plot)

[1] "function"

> class(table(1:4, 1:4))

[1] "table"

Stojnić and Gatto (CSBC) 14 / 77

Recommended coding standards

Coding standards

Use <- for assignment rather than =.

Avoid long lines (80 characters).

Use spaces for identation (2 or 4).

No semi-colomns (unless you have several expression in a line).

Start names with upper case for classes, lower for the rest.

Use syntax highlighting

Stojnić and Gatto (CSBC) 15 / 77

Plan

1 Course introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 S4 object oriented framework

5 S3 object oriented framework

6 S4 Reference Classes

Stojnić and Gatto (CSBC) 16 / 77

Object-oriented Programming (OOP)

Object-oriented vs Procedural programming

OOP introduced in 1970s in Smalltalk but gained wider popularity in
1990s with programming languages like C++ and Delphi

Traditional (procedural) programming - data and functions decoupled

Object-oriented programming - data and functions tied together in
objects

OOP concepts

Abstraction - related data is stored and handled together

Inheritance - code reuse by hierarchy of more-to-less general object
types (classes)

Polymorphism - the most appropriate function is called based on the
dataset (e.g various plot functions)

Stojnić and Gatto (CSBC) 17 / 77

Procedural vs Object-oriented Programming

Procedural programming

> area <-

+ function(x1,y1,x2,y2){
+ abs(x2-x1)*abs(y2-y1)

+ }
> area(0, 0, 5, 5)

[1] 25

Object-oriented programming

> setClass("Rectangle",

+ representation = representation(

+ x1 = "numeric",

+ y1 = "numeric",

+ x2 = "numeric",

+ y2 = "numeric")

+)

> setGeneric("area",

+ function(obj) standardGeneric("area"))

[1] "area"

> setMethod("area", "Rectangle", function(obj) {
+ abs(obj@x2 - obj@x1) * abs(obj@y2 - obj@y1)

+ })

[1] "area"

> rect = new("Rectangle", x1=0, y1=0, x2=5, y2=5)

> area(rect)

[1] 25Stojnić and Gatto (CSBC) 18 / 77

OOP in R (1)

S3

Older and less formal framework with no explicit class definitions. Many
parts of base R use S3, e.g. plotting, linear modelling, ...

limited introspection, single inheritance, single dispatch,
instance-based

S4

Full-fledged object-oriented framework, de-facto standard for most modern
packages and required for Bioconductor packages.

introspection, multiple inheritance, multiple dispatch (introduces a
small overhead)

Stojnić and Gatto (CSBC) 19 / 77

OOP in R (2)

S4 Reference classes

Introduced in R -2.12

mutable objects, single inheritance, single dispatch, fields and
methods in class definition, methods associated with classes (rather
than generics)

Stojnić and Gatto (CSBC) 20 / 77

Course working example

Working example revisited

Working example for this course will be manipulating DNA/RNA sequence
data.

Functions we would like to have:

readFasta() - read in a single sequence from a FASTA file

id(), seq() - return the ID of sequence and the sequence (accessors)

rev() - return reverse DNA/RNA sequence

length() - return DNA/RNA sequence length

comp() - return complementary DNA/RNA sequence

transcribe() - return RNA sequence for DNA sequence

Goal

The final product should be an R package using S4 framework. But we need to
get there, so lets start with a procedural and S3 implementation...

Stojnić and Gatto (CSBC) 21 / 77

Plan

1 Course introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 S4 object oriented framework

5 S3 object oriented framework

6 S4 Reference Classes

Stojnić and Gatto (CSBC) 22 / 77

readFasta() input file

We will start with the implementation of readFasta(). This function
should load the data from a FASTA file and somehow represent it in R .

A sample FASTA file:

> example dna sequence

agcatacgacgactacgacactacgacatcagacactacagactactac

gactacagacatcagacactacatatttacatcatcagagattatatta

acatcagacatcgacacatcatcatcagcatcat

Sequence description

Notice that a sequence is described by the:

name (example dna sequence)

nucleotide sequence

sequence alphabet (in case of DNA ATGC, for RNA AUGC)

Stojnić and Gatto (CSBC) 23 / 77

Defining S4 classes

Defining S4 class

Each class in S4 needs to be defined before it can be used. At this stage
data types and inheritance are specified.

> setClass("GenericSeq",

+ representation = representation(

+ id = "character",

+ sequence = "character",

+ alphabet = "character"

+))

Stojnić and Gatto (CSBC) 24 / 77

Defining S4 classes

S4 class slots

Slots define the names and types of variables that are going to be stored
in the object. Types can be any of the basic R type or S3/S4 classes. To
inspect how basic R types are called use class(), e.g.

> class("hello")

[1] "character"

Stojnić and Gatto (CSBC) 25 / 77

S4 objects

Creating S4 objects

Once we have a class definition, we can make an object by filling out the
slots. We can directly access the slots using the @ notation although this is
discouraged.

> genseq <- new("GenericSeq",

+ id="sequence name",

+ sequence="AGATACCCCGAAACGA",

+ alphabet=c("A", "C", "G", "T")

+)

Stojnić and Gatto (CSBC) 26 / 77

S4 objects

> genseq

An object of class "GenericSeq"

Slot "id":

[1] "sequence name"

Slot "sequence":

[1] "AGATACCCCGAAACGA"

Slot "alphabet":

[1] "A" "C" "G" "T"

> genseq@id

[1] "sequence name"

> slot(genseq, "id")

[1] "sequence name"

Stojnić and Gatto (CSBC) 27 / 77

Naive readFasta() implementation

readFasta() implementation

Read in a sequence from FASTA file and return the id, sequence and
alphabet in a list:

> readFasta <- function(infile){
+ lines <- readLines(infile)

+ header <- grep("^>", lines)

+ if (length(header) > 1) {
+ warning("Reading first sequence only.")

+ lines <- lines[header[1]:(header[2]-1)]

+ header <- header[1]

+ }
+ id <- sub("^> *","",lines[header],perl=TRUE)

+ sequence <- toupper(paste(lines[(header+1):length(lines)],collapse=""))

+ alphabet <- unique(strsplit(sequence,"")[[1]])

+ return.value <- new("GenericSeq", id=id, sequence=sequence, alphabet=alphabet)

+ return.value

+ }

Stojnić and Gatto (CSBC) 28 / 77

S4 object from readFasta()

> s <- readFasta("aDnaSeq.fasta")

> s

An object of class "GenericSeq"

Slot "id":

[1] "example dna sequence"

Slot "sequence":

[1] "AGCATACGACGACTACGACACTACGACATCAGACACTACAGACTACTACGACTACAGACATCAGACACTACATATTTACATCATCAGAGATTATATTAACATCAGACATCGACACATCATCATCAGCATCAT"

Slot "alphabet":

[1] "A" "G" "C" "T"

Stojnić and Gatto (CSBC) 29 / 77

Writing S3/S4 methods: introducing Generics

Stojnić and Gatto (CSBC) 30 / 77

Defining S4 methods

When a generic does not exist already

If a generic id() does not exist, we need to create it to be able to use our
method.

We create our (hidden) implementation with setMethod().

> setGeneric("id", function(obj, ...) standardGeneric("id"))

[1] "id"

> setMethod("id", "GenericSeq", function(obj, ...) obj@id)

[1] "id"

> id(genseq)

[1] "sequence name"

Stojnić and Gatto (CSBC) 31 / 77

Defining S4 methods

When a generic exists

How to check if a generic for e.g. rev exists:

isGeneric("rev") will check for S4 generics. If it already exists, we
use it with the defined parameter names.

show(rev) will show the source code of rev if it exists. If the source
contains UseMethod("rev") it is an S3 generic. In this case, we need
to define a S4 generic with exactly the same parameters.

All primitive function (e.g. c()) have implicit generics.

> setGeneric("rev", function(x) standardGeneric("rev"))

[1] "rev"

> setMethod("rev", "GenericSeq", function(x)

+ paste(rev(unlist(strsplit(x@sequence, ""))),

+ collapse=""))

[1] "rev"

Stojnić and Gatto (CSBC) 32 / 77

> rev(genseq)

[1] "AGCAAAGCCCCATAGA"

> rev(1:5)

[1] 5 4 3 2 1

> showMethods("rev")

Function: rev (package base)

x="ANY"

x="character"

(inherited from: x="ANY")

x="GenericSeq"

x="integer"

(inherited from: x="ANY")

Stojnić and Gatto (CSBC) 33 / 77

S4 accessor methods

It is considered bad practice to use @ in your code to access slots. It breaks
the division between the internal class implementation and class usage.

Instead, create getter and setter methods for all slots you want to expose.

> setGeneric("id<-",

+ function(object,value) standardGeneric("id<-"))

[1] "id<-"

> setReplaceMethod("id",

+ signature(object="GenericSeq",

+ value="character"),

+ function(object, value) {
+ object@id <- value

+ return(object)

+ })

[1] "id<-"

> id(genseq) <- "new sequence name"

> id(genseq)

[1] "new sequence name"Stojnić and Gatto (CSBC) 34 / 77

S4 introspection

Exercise 1: (code: 01_basic_S4.R)

Try the following introspection functions:

> showMethods("rev")

> getClass("GenericSeq")

> slotNames(genseq)

> getMethod("rev", "GenericSeq")

> findMethods("rev")

> isGeneric("rev")

What do these function output? In some cases the result is an object. Use
the introspection functions to find out more about the results (e.g.
class(), getClass(),...).

Stojnić and Gatto (CSBC) 35 / 77

Exercise 2: (code as above, solution: 01_basic_S4_solution.R)

Lets complete our GenericSeq implementation with some more methods.
Implement getter/setter method seq() and getter only alphabet(). Then
implement the method length() to return sequence length. First check if
"length" is already a generic though.

Stojnić and Gatto (CSBC) 36 / 77

S4 use cases and considerations

Developer vs User

In OOP there is a strong distinction between a developer (i.e. you) who
has complete knowledge of the code, and the user who just wants to
achieve a certain task.

When to use S4?

When to create a new class?
- If there is a clear benefit in terms of data organisation and generic
re-usage (e.g. plot() function).

When to create a new generic?
- Accessors or general functionality (e.g. normalize()).
- If using Bioconductor always check package BiocGenerics and
other packages you use.

Stojnić and Gatto (CSBC) 37 / 77

Special methods - show()

You might have noticed that many object print a custom description
instead of a plain list of slots. We can add this functionality by setting
show() and print() methods.

> setMethod("show",

+ "GenericSeq",

+ function(object) {
+ cat("Object of class",class(object),"\n")
+ cat(" Id:",id(object),"\n")
+ cat(" Length:",length(object),"\n")
+ cat(" Alphabet:",alphabet(object),"\n")
+ cat(" Sequence:",seq(object), "\n")
+ })

[1] "show"

> genseq

Object of class GenericSeq

Id: new sequence name

Length: 16

Alphabet: A C G T

Sequence: AGATACCCCGAAACGAStojnić and Gatto (CSBC) 38 / 77

Special methods - print()

The print() function already exists, but is not an S4 generic.

> setGeneric("print", function(x,...) standardGeneric("print"))

[1] "print"

> setMethod("print", "GenericSeq",

+ function(x) {
+ sq <- strsplit(seq(x),"")[[1]]

+ cat(">", id(x), "\n", " 1 ")

+ for (i in 1:length(x)) {
+ if ((i %% 10) == 0)

+ cat("\n", i, " ")

+ cat(sq[i])

+ }
+ cat("\n")
+ })

[1] "print"

Stojnić and Gatto (CSBC) 39 / 77

> print(genseq)

> new sequence name

1 AGATACCCC

10 GAAACGA

Stojnić and Gatto (CSBC) 40 / 77

Special methods - initialize()

We might need to do some special processing on object creation. We can
do this with a custom initialize() method.
Use named arguments with default values (otherwise class checking might
fail).

> setMethod("initialize", "GenericSeq",

+ function(.Object, ..., id="", sequence="", alphabet=""){
+ .Object@id <- id

+ .Object@sequence <- toupper(sequence)

+ .Object@alphabet <- alphabet

+ callNextMethod(.Object, ...) # call parent class initialize()

+ })

[1] "initialize"

> show(new("GenericSeq", id="new seq.", alphabet=c("A", "T"), sequence="atatta"))

Object of class GenericSeq

Id: new seq.

Length: 6

Alphabet: A T

Sequence: ATATTA

Stojnić and Gatto (CSBC) 41 / 77

Inheritance in S4 class system

Implementation of GenericSeq is finished. Now we want to re-use this code and
add some extra functionality for DnaSeq and RnaSeq.

We start by defining the new classes that will inherit (contain) our GenericSeq

class. It is good practise to provide some default (prototype) values.

> setClass("DnaSeq",

+ contains = "GenericSeq",

+ prototype = prototype(

+ id = paste("my DNA sequence", date()),

+ alphabet = c("A", "C", "G", "T"),

+ sequence = character()))

>

> setClass("RnaSeq",

+ contains = "GenericSeq",

+ prototype = prototype(

+ id = paste("my RNA sequence", date()),

+ alphabet = c("A", "C", "G", "U"),

+ sequence = character()))

Stojnić and Gatto (CSBC) 42 / 77

Extending child classes with custom methods

Custom comp() methods in two subclasses

Now we can write the comp() method which is going to work differently for DNA
and RNA sequences.

> setGeneric("comp",function(object, ...) standardGeneric("comp"))

[1] "comp"

> setMethod("comp", "DnaSeq",

+ function(object, ...) {
+ chartr("ACGT", "TGCA", seq(object))

+ })

[1] "comp"

> setMethod("comp","RnaSeq",

+ function(object, ...) {
+ chartr("ACGU", "UGCA", seq(object))

+ })

[1] "comp"
Stojnić and Gatto (CSBC) 43 / 77

Creating objects of appropriate class

We could use new() to create new object instances, but it is tedious and error

prone. Instead, we should provide a function that reads in some data and sets the

right class for the data.

> readFasta <- function(infile){
+ lines <- readLines(infile)

+ header <- grep("^>", lines)

+ if (length(header)>1) {
+ warning("Reading first sequence only.")

+ lines <- lines[header[1]:(header[2]-1)]

+ header <- header[1]

+ }
+ .id <- sub("^> *","",lines[header],perl=TRUE)

+ .sequence <- toupper(paste(lines[(header+1):length(lines)],collapse=""))

+ .alphabet <- toupper(unique(strsplit(.sequence,"")[[1]]))

+ if (all(.alphabet %in% c("A","C","G","T"))) {
+ newseq <- new("DnaSeq",

+ id=.id,

+ sequence=.sequence)

+ } else if (all(.alphabet %in% c("A","C","G","U"))) {
+ newseq <- new("RnaSeq",

+ id=.id,

+ sequence=.sequence)

+ } else {
+ stop("Alphabet ",.alphabet," is unknown.")

+ }
+ return(newseq)

+ }

Stojnić and Gatto (CSBC) 44 / 77

Object validity tests

The user can still use new in an inconsistent way or change a consistent object in

the way that will render it inconsistent (e.g. assign an RNA sequence to an object

of class DnaSeq). First lets make sure each new object is consistent, e.g. that

alphabet matches sequence.

> setClass("GenericSeq",

+ representation = representation(

+ id = "character",

+ alphabet = "character",

+ sequence = "character"),

+ validity = function(object) {
+ isValid <- TRUE

+ if (nchar(object@sequence)>0) {
+ chars <- casefold(unique(unlist(strsplit(object@sequence,""))))

+ isValid <- all(chars %in% casefold(object@alphabet))

+ }
+ if (!isValid)

+ cat("Some characters are not defined in the alphabet.\n")
+ return(isValid)

+ })

Stojnić and Gatto (CSBC) 45 / 77

Validity tests - setters

Now lets make sure the user cannot render the objects inconsistent by modifying

the object.

> setReplaceMethod("id",

+ signature(object="GenericSeq",

+ value="character"),

+ function(object, value) {
+ object@id <- value

+ if (validObject(object))

+ return(object)

+ })

[1] "id<-"

> setReplaceMethod("seq",

+ signature(object="GenericSeq",

+ value="character"),

+ function(object, value) {
+ object@sequence <- value

+ if (validObject(object))

+ return(object)

+ })

[1] "seq<-"

Stojnić and Gatto (CSBC) 46 / 77

S4 exercises

Look at the code we wrote so far and understand it. Then solve the
following exercise.

Exercise 3: (code: 02_S4_complete.R)

Try again reading the supplied fasta file using
x <- readFasta("aDnaSeq.fasta")

Inspect the resulting object using object introspection tools. Try to break the
resulting object by assigning invalid values to sequence. What happens if you do:

seq(x) <- "!"

and what if:
x@sequence <- "!"

Exercise 4: (code as above, solution: 02_transcribe_solution.R)

Implement a new method transcribe() of DnaSeq. This method should take a
DnaSeq, replace the T’s with U’s and return a RnaSeq object.

Stojnić and Gatto (CSBC) 47 / 77

More S4 features and considerations

Virtual classes

A class can be marked to be virtual so that no objects can be made, but
it can only be inherited. In our case, we might want to mark GenericSeq

as virtual, to do so just add parameter "VIRTUAL" into class
representation.

Class unions

In some cases we might want a slot to contain an object from one of
multiple unrelated classes. In that case we would create a ”dummy” class
to serve as a place holder. For this we can use class union, for example
setClassUnion("AOrB", c("A", "B")) would create a new virtual
class AOrB that is a parent class to both A and B.

Stojnić and Gatto (CSBC) 48 / 77

S4 operator overloading

Overriding operators

Operators in R can also be overridden. For instance setMethod("[",

MyClass,) will override the subsetting operator [] for MyClass to
give it custom functionality. Other operators like [[]] and $ can also be
overridden.

> setMethod("[",

+ signature = signature(x = "GenericSeq",

+ i = "ANY", j = "missing"),

+ function(x, i, j, ..., drop = TRUE) {
+ paste(unlist(strsplit(x@sequence,""))[i], collapse="")

+ })

[1] "["

> genseq[1:10]

[1] "AGATACCCCG"

Stojnić and Gatto (CSBC) 49 / 77

S4 generics clashes

Same generic name in two packages

What if two R packages, both using S4, provide a different generics
definition?

> # generic in package1

> setGeneric("score", function(object, ...) standardGeneric("score"))

> # generic in package2

> setGeneric("score", function(x, ...) standardGeneric("score"))

Generics masking

Although the difference is only in the name of the argument we are
dispatching on, the second generic is going to mask the first one, and any
S4 methods that are defined for the first generic in package1 will no longer
work.

Stojnić and Gatto (CSBC) 50 / 77

Plan

1 Course introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 S4 object oriented framework

5 S3 object oriented framework

6 S4 Reference Classes

Stojnić and Gatto (CSBC) 51 / 77

S3 versus S4

Differences of S3 class system to S4

Classes are not explicit - New types are created by manually setting the
class() attribute.

Generics and dispatching by naming convention - Generics work by an
informal naming convention

Limited introspection

No validity checking, multiple inheritance, multiple dispatch, virtual
classes

S4 class system is the de-facto standard in Bioconductor, but most of base
R is written in S3.

Stojnić and Gatto (CSBC) 52 / 77

Creating an object in S3

In S3, classes are not explciit, and objects are created by setting the
class() attribute.

> s <- list(id="example", sequence="ACCTAGAT", alphabet=c("A", "C", "G", "T"))

> class(s) <- "GenericSeq"

> s

$id

[1] "example"

$sequence

[1] "ACCTAGAT"

$alphabet

[1] "A" "C" "G" "T"

attr(,"class")

[1] "GenericSeq"

> names(s)

[1] "id" "sequence" "alphabet"

Stojnić and Gatto (CSBC) 53 / 77

S3 generics and dispatch

Methods are created by naming convention

The method is named as <generic>.<class>. The generic that is
defined by the usage of the UseMethod() command will look for functions
of this format in the current workspace. If not function is found it will use
<generic>.default.

> # generic

> id <- function(obj, ...) UseMethod("id")

> # method

> id.GenericSeq <- function(obj, ...) obj$id

>

> id(s)

[1] "example"

Stojnić and Gatto (CSBC) 54 / 77

S3 generics in base R

> summary

function (object, ...)

UseMethod("summary")

<bytecode: 0x333e228>

<environment: namespace:base>

> x <- c(1, 4, 2, 1, 4, 2)

> class(x)

[1] "numeric"

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.250 2.000 2.333 3.500 4.000

Stojnić and Gatto (CSBC) 55 / 77

To see what method exist for a generic:

> methods(summary)

[1] summary.aov summary.aovlist*

[3] summary.aspell* summary.check_packages_in_dir*

[5] summary.connection summary.data.frame

[7] summary.Date summary.default

[9] summary.ecdf* summary.factor

[11] summary.glm summary.infl*

[13] summary.lm summary.loess*

[15] summary.manova summary.matrix

[17] summary.mlm* summary.nls*

[19] summary.packageStatus* summary.PDF_Dictionary*

[21] summary.PDF_Stream* summary.POSIXct

[23] summary.POSIXlt summary.ppr*

[25] summary.prcomp* summary.princomp*

[27] summary.proc_time summary.srcfile

[29] summary.srcref summary.stepfun

[31] summary.stl* summary.table

[33] summary.tukeysmooth*

see "?methods" for accessing help and source code

Stojnić and Gatto (CSBC) 56 / 77

S3 dispatch

Because there is no summary.numeric, the default implementation
summary.default is used.

> x <- c(1, 4, 2, 1, 4, 2)

> class(x)

[1] "numeric"

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.250 2.000 2.333 3.500 4.000

> summary.default(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 1.250 2.000 2.333 3.500 4.000

Stojnić and Gatto (CSBC) 57 / 77

> y <- table(c(0, 1, 1, 0), c(1, 0, 1, 1))

> class(y)

[1] "table"

> summary(y)

Number of cases in table: 4

Number of factors: 2

Test for independence of all factors:

Chisq = 1.3333, df = 1, p-value = 0.2482

Chi-squared approximation may be incorrect

> summary.table(y)

Number of cases in table: 4

Number of factors: 2

Test for independence of all factors:

Chisq = 1.3333, df = 1, p-value = 0.2482

Chi-squared approximation may be incorrect

Stojnić and Gatto (CSBC) 58 / 77

S3 methods exercises

Look at the code we have written so far, understand it, and then solve the
following exercise.

Exercise 5:

Explore some of the built-in generics and methods. Try the following commands:

methods("summary")

methods(class="lm")

Exercise 6: (code:03_GenericSeq.R, solution:03_GenericSeq_solution.R)

Both length() and rev() are already generic functions, but alphabet() is not.
Add these methods for class GenericSeq:

length() should return the length of the DNA/RNA sequence

alphabet() should return the alphabet of the sequence

rev() should return the sequence in reverse (Hint: try to use functions

strsplit() and the existing base rev() function).

Stojnić and Gatto (CSBC) 59 / 77

S3 inheritance

Reusing class methods

So far we have written methods for GenericSeq that work with any
sequence type. Now lets introduce a new class DnaSeq. We want to
inherit all methods from GenericSeq - to achieve this simply set the
class attribute to all applicable class names.

> setSeqSubtype <- function(s){
+ if (all(alphabet(s) %in% c("A","C","G","T"))) {
+ class(s) <- c("DnaSeq", "GenericSeq")

+ } else if (all(alphabet(s) %in% c("A","C","G","U"))) {
+ class(s) <- c("RnaSeq", "GenericSeq")

+ } else {
+ stop("Alphabet ", alphabet(s) ," is unknown.")

+ }

+ return(s)

+ }
> s.dna <- setSeqSubtype(s)

> class(s.dna)

[1] "DnaSeq" "GenericSeq"
Stojnić and Gatto (CSBC) 60 / 77

S3 inheritance continued

DnaSeq methods

Define a DnaSeq method comp(). All GenericSeq methods still work with
DnaSeq objects, but the comp() only works with DnaSeq.

> comp <- function(x, ...){ UseMethod("comp") }
> comp.DnaSeq <- function(x, ...)

+ chartr("ACGT", "TGCA", seq(x))

Stojnić and Gatto (CSBC) 61 / 77

S3 inheritance continued

> id(s) # works on GenericSeq

[1] "example"

> id(s.dna) # works on DnaSeq, GenericSeq

[1] "example"

> comp(s) # fails with error

Error in UseMethod("comp"): no applicable method for

’comp’ applied to an object of class "GenericSeq"

> comp(s.dna)

[1] "TGGATCTA"

Stojnić and Gatto (CSBC) 62 / 77

S3 inheritance continued

S3 dispatch and inheritance

The dispatching will look for appropriate methods for all x (sub-)classes
(in order in which they are set).

Stojnić and Gatto (CSBC) 63 / 77

S3 inheritance exercise

Look at the inheritance code and understand how it works. Then solve the
following exercise.

Exercise 7: (code: 04_inherit.R, solution: 04_inherit_solution.R)

Write the comp() method for RnaSeq class. Since we don’t have a RNA
FASTA file you will have to make a new RnaSeq object by hand and assign
the right classes to test your code.

What do you notice about the S3 class system, is it easy to make
mistakes? Could you also make your RNA sequence to be of class ”lm”?

Stojnić and Gatto (CSBC) 64 / 77

S3 class system revision

Classes are implicit (no formal class definition)

Making new objects is done by simply setting the class attribute

Making class methods is done by defining a generic function
functionName() and a normal function functionName.className().
Methods can be retrieved using the methods() function.

Objects can inherit multiple classes by setting the class attribute to a
vector of class names

Many functions in base R use the S3 system

Easy to make new ad-hoc classes and objects, but also mistakes and
inconsistencies

The S4 class system was designed to address some of these concerns.

Stojnić and Gatto (CSBC) 65 / 77

Mutability in S3 and S4

Mutability

R objects are not mutable; R has a pass-by-value semantics, consistently with
functional programming semantics. Whenevera you pass an object to a function,
a copy is passed as argument; changes made to the object are local to the
function call; the original object is unchanged. This is how things work for both
S3 and S4 class systems.

a
Although, in general, R tries to avoid copying objects unless they are modified.

> seq(a)

[1] "ACGTAA"

> comp(a)

[1] "TGCATT"

> seq(a)

[1] "ACGTAA"

Stojnić and Gatto (CSBC) 66 / 77

Plan

1 Course introduction

2 Revision of basic R

3 Object-oriented (OO) Programming

4 S4 object oriented framework

5 S3 object oriented framework

6 S4 Reference Classes

Stojnić and Gatto (CSBC) 67 / 77

Reference classes

Reference classes

This paradigm uses pass-by-reference semantics: invoking a method
may modify the content of the fields.

Methods in this paradigm are associated with the object (rather than
to generics)

Java-like logic.

See ?ReferenceClasses for all the details.

Example

here, you would have

> a$seq() ## equivalent of seq(a)

[1] "AGCATG"

> a$comp()

> a$seq()

[1] "TCGTAC"

Stojnić and Gatto (CSBC) 68 / 77

Reference classes - objects and fields

Defining a reference class

Slots → a list of fields

> Seq <- setRefClass("Seq",

+ fields = list(

+ id = "character",

+ alphabet = "character",

+ sequence = "character"))

Generator objects

The return value of setRefClass is a generator object that is used to
construct new object of given class.

Stojnić and Gatto (CSBC) 69 / 77

Reference classes - methods

Defining a reference class

Methods → a list of functions

> Seq <- setRefClass("Seq",

+ fields = list(

+ id = "character",

+ alphabet = "character",

+ sequence = "character"),

+ methods = list(

+ comp = function() {
+ "Complements the (DNA) sequence" ## inline docs

+ sequence <<- chartr("ACGT","TGCA",.self$sequence)

+ id <<- paste(.self$id, "-- complemented")

+ }
+ ## there can be more, of course

+))

Methods can be added either directly in class definition or later by calling
Seq$methods(functionName = function() { ...code... }).

Stojnić and Gatto (CSBC) 70 / 77

Using the reference classes

You also need to know that...

accessing fields and calling methods is done with the $ operator.

the current object can be referred to in a method by the reserved
name .self.

Changing fields of an object within methods needs to be done with
the <<- operator.

Stojnić and Gatto (CSBC) 71 / 77

> s <- Seq$new(id="foo", sequence="GATCATCA")

> s

Reference class object of class "Seq"

Field "id":

[1] "foo"

Field "alphabet":

character(0)

Field "sequence":

[1] "GATCATCA"

> s$sequence

[1] "GATCATCA"

> s$comp()

> s$sequence

[1] "CTAGTAGT"

Stojnić and Gatto (CSBC) 72 / 77

Reference classes

Suitable for...

Reference classes are suitable for objects that are dynamically tracked by
all the code: GUI components, read-only access to files (streams, data
bases), internet resources, editing facilities, ...

Stojnić and Gatto (CSBC) 73 / 77

S4 introspection and methods exercises

Exercise 8: (code: 05_seqRefClass.R)

We implemented some more methods using Reference Classes. Read
through the methods and make sure you understand how they work. Then
try out the test code in 05_seqRefClass.R. What happens when we
assign one Reference Class object to another?

Stojnić and Gatto (CSBC) 74 / 77

Wrap up

Object-oriented programming paradigm.

S3 – easy, but can get unsafe; widely used in R .

S4 – more verbose, but with more features (explicit classes,
introspection, consistency and validity checks, multiple dispatch and
inheritance, ...).

Reference classes – pass-by-reference semantic, Java-like.

Stojnić and Gatto (CSBC) 75 / 77

Writing R Extensions, R Core team.

devtools wiki.

Robert Gentleman, R Programming for Bioinformatics, 2008.

Stojnić and Gatto (CSBC) 76 / 77

This work is licensed under a CC BY-SA 3.0 License

Slides and other material:
https://github.com/lgatto/TeachingMaterial

Thank you for you attention.

Stojnić and Gatto (CSBC) 77 / 77

https://github.com/lgatto/TeachingMaterial

	Course introduction
	Revision of basic R
	Object-oriented (OO) Programming
	S4 object oriented framework
	S3 object oriented framework
	S4 Reference Classes

