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How to Use this User Guide 

This handbook accompanies the taught sessions for the course. Each section 
contains a brief overview of a topic for your reference and then one or more 
exercises. 

Exercises are arranged as follows: 

 A title and brief overview of the tasks to be carried out; 

 A numbered set of tasks, together with a brief description of each; 

 A numbered set of detailed steps that will achieve each task. 

Some exercises, particularly those within the same section, assume that you have 
completed earlier exercises. Your teacher will direct you to the location of files 
that are needed for the exercises. If you have any problems with the text or the 
exercises, please ask the teacher or one of the demonstrators for help. 

This book includes plenty of exercise activities – more than can usually be 
completed during the hands-on sessions of the course. You should select some to 
try during the course, while the teacher and demonstrator(s) are around to guide 
you. Later, you may attend follow-up sessions at IT Services called Computer8, 
where you can continue work on the exercises, with some support from IT 
teachers. Other exercises are for you to try on your own, as a reminder or an 
extension of the work done during the course. 

Text Conventions 

A number of conventions are used to help you to be clear about what you need to 
do in each step of a task. 

 In general, the word press indicates you need to press a key on the 
keyboard. Click, choose or select refer to using the mouse and clicking 
on items on the screen. If you have more than one mouse button, click 
usually refers to the left button unless stated otherwise. 

 Labels and titles on the screen are shown l ike this . 

 Drop-down menu options are indicated by the name of the options 
separated by a vertical bar, for example Fi le|Pr int . In this example you 
need to select the option Print  from the Fi le  menu or tab. To do this, click 
when the mouse pointer is on the Fi le  menu or tab name; move the 
pointer to Print ; when Print  is highlighted, click the mouse button again. 

 A button to be clicked will look l ike  this . 

 The names of software packages are identified like this, and the names of 
files to be used l ike this . 

 Boxes with the broken borders have examples contained within.  

 Boxes with double borders have cautionary exposition within. 

Software Used 

R 2.14.0 or later versions 

Files Used 

text_sample.Rd, age_weight.txt, district.txt, expenditure.txt, expenditure.csv 
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The other datasets used have been preloaded in the R package ‘datasets’. To list all the 
datasets available, use the command 

> data() 

This will bring up a window listing the datasets and providing a short description of each. To 
obtain a more detailed description, use the command help(). For example, the line below 
brings up a html file describing the ‘Biochemical Oxygen Demand’ experiment in greater 
detail.  

> help(“BOD”) 

Revision Information 

Version Date  Author  Changes made 

2.0 Jan 2013 Esther Ng Created   
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Non-Commercial, No Derivatives. Individual resources are subject to their own licencing 
conditions as listed below. 

Acknowledgements 

David Baker, Denise Cattell and Kathryn Wenczek for their help in organising the course and 
putting the course notes together 



TMMJ R: An Introduction 

IT services 4  

Contents 

 

1 Introduction ............................................................................. 7 

1.1. What you should already know .......................................................... 7 

1.2. What will you learn?........................................................................... 7 

2 Getting Started ......................................................................... 8 

2.1. What is R? .......................................................................................... 8 

2.1.1. Advantages ............................................................................................ 8 

2.1.2. Disadvantages ...................................................................................... 8 

2.2. Download and Installation ................................................................ 8 

2.3. R and other tools/languages .............................................................. 8 

2.3.1. Matlab ................................................................................................... 8 

2.3.2. SPSS/SAS ............................................................................................. 8 

2.3.3. C++....................................................................................................... 8 

2.4. R on different platforms .................................................................... 9 

2.5. Commands ......................................................................................... 9 

2.6. Getting Help ....................................................................................... 9 

Exercise 1 Getting Started ....................................................... 12 

3 Basic Data Structures ............................................................. 13 

3.1. Vectors ............................................................................................... 13 

3.1.1. Creating numerical vectors .................................................................. 13 

3.1.2. Accessing elements of numerical vectors ............................................14 

3.1.3. Arithmetic operations on numerical vectors ....................................... 15 

3.1.4. Useful vector commands ..................................................................... 15 

3.2. Lists ...................................................................................................16 

3.3. Matrices.............................................................................................16 

3.3.1. Creating matrices ................................................................................16 

3.3.2. Accessing elements of a matrix .......................................................... 18 

3.3.3. Useful matrix commands ....................................................................19 

3.4. Data frames ....................................................................................... 21 

3.5. Factors ............................................................................................... 21 

Exercise 2 Vectors and Matrices ............................................. 22 

4 Reading and Writing data ...................................................... 24 

4.1. Reading Text Files ............................................................................ 24 

4.2. Reading built-in data ....................................................................... 24 



R: An Introduction  TMMJ 

 5 IT Services 

4.3. Editing Data in Spreadsheet style ................................................... 24 

4.4. Writing out data ............................................................................... 25 

Exercise 3 Reading and Writing Files ..................................... 25 

5 Scripts, Objects and the Workspace ....................................... 27 

5.1. Objects and the Workspace .............................................................. 27 

5.2. Directories ........................................................................................ 28 

5.3. Running scripts ................................................................................ 28 

Exercise 4 Scripts, Objects and Workspaces .......................... 29 

6 Control Statements and Loops .............................................. 31 

6.1. If/Else and Ifelse ............................................................................... 31 

6.2. Loops ................................................................................................. 31 

Exercise 5 Loops and If/Else statements ................................ 33 

7 Working with text in R ........................................................... 34 

7.1. Characters and Strings ..................................................................... 34 

7.2. Useful commands ............................................................................ 35 

7.2.1. Count number of characters in the string .......................................... 35 

7.2.2. Split the string .................................................................................... 35 

7.2.3. Search text strings for a word ............................................................ 36 

Exercise 6 Text Manipulations in R ........................................ 36 

8 Graphs and Charts ................................................................. 37 

8.1. High level plotting commands ......................................................... 37 

8.1.1. Generic plot() command ..................................................................... 37 

8.1.2. Boxplot ............................................................................................... 38 

8.1.3. Histogram ........................................................................................... 38 

8.1.4. Options ............................................................................................... 39 

8.2. Low Level Plotting Functions .......................................................... 42 

Exercise 7 Plotting functions in R ........................................... 43 

9 Statistics with R ..................................................................... 45 

9.1. Measures of Central Tendency and Spread ..................................... 45 

9.2. Tests for continuous vs discrete variables ....................................... 45 

9.2.1. 2 groups .............................................................................................. 45 

9.2.2. 3 or more groups ................................................................................ 45 

9.3. Tests for discrete vs discrete variables ............................................ 48 

9.3.1. Chi Square Test .................................................................................. 48 

9.3.2. Fisher’s Exact Test ............................................................................. 48 



TMMJ R: An Introduction 

IT services 6  

9.4. Tests for continuous vs continuous variables ................................. 49 

9.4.1. Pearson Correlation ........................................................................... 49 

9.4.2. Spearman Correlation ........................................................................ 49 

9.5. Regression ......................................................................................... 51 

9.6. Probability Distributions ................................................................. 52 

9.7. Other Statistical Features ................................................................ 52 

9.8. Packages ........................................................................................... 53 

Exercise 8 Statistics in R ......................................................... 53 

10 Writing your own functions ................................................. 54 

11 References ............................................................................. 55 

 

  



R: An Introduction  TMMJ 

 7 IT Services 

1  Introduction 
Welcome to Introduction to R! 

This booklet accompanies the course delivered by Oxford University IT services, 
IT Learning Programme. Although the exercises are clearly explained so that you 
can work through them independently, you will find that it will help if you also 
attend the taught session where you can get advice from the teacher, 
demonstrator(s) and even each other! 

If at any time you are not clear about any aspect of the course, please make sure 
you ask your teacher or demonstrator for some help. If you are away from the 
class, you can get help by email from your teacher or from help@it.ox.ac.uk. 

1.1. What you should already know 

While basic knowledge of programming would be helpful, it is not essential. 
Knowledge of statistics would be helpful in understanding the later chapters. 

1.2. What will you learn? 

This course will teach basic R programming for data analysis and presentation. 
While it provides a framework of tools, please remember that data is highly 
individualised from study to study, hence methods which seem applicable to one 
study are not necessarily generalizable to another study. R has an active network 
of users who are constantly developing packages for various disciplines. These 
packages are open-source and can be freely downloaded from  

http://cran.r-project.org/ 

http://cran.r-project.org/
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2 Getting Started 

2.1. What is R? 

R is a collection of software tools for data manipulation, analysis and 
presentation. It is an implementation of the S language. There are several 
advantages and disadvantages 

2.1.1. Advantages 

Extensive collection of statistical functions and operators for matrix calculations 

Effective data handling and storage 

Simple syntax 

Good graphical facilities for data display 

2.1.2. Disadvantages 

Steeper learning curve compared to SPSS or SAS for users with no background in 
programming 

Slow performance compared to languages like C/C++ 

Larger room for error as R tends to make assumptions rather than produce error 
messages when commands are unclear 

2.2. Download and Installation 

Detailed instructions can be found at http://cran.r-project.org/ for Windows, 
Unix and Mac. For certain packages, previous versions for R may be needed due 
to various dependencies. These previously versions can also be downloaded from 
the website mentioned above. 

2.3. R and other tools/languages 

2.3.1. Matlab 

For those with a background in engineering and a knowledge of Matlab, this document 
facilitates the translation of Matlab syntax into R syntax as there are functions which are very 
similar in both environments http://cran.r-project.org/doc/contrib/Hiebeler-matlabR.pdf 

2.3.2. SPSS/SAS 

For those who have mainly used SPSS/SAS for their statistical needs, R may seem confusing 
at first due to the command line interface. However, this document 
http://www.et.bs.ehu.es/~etptupaf/pub/R/RforSAS&SPSSusers.pdf provides more 
information to smoothen the transition between the different environments 

2.3.3. C++ 

C++ code is often used to speed up calculations in R. The 2 languages can be interfaced more 
easily using this package. http://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-
introduction.pdf 

http://cran.r-project.org/
http://cran.r-project.org/doc/contrib/Hiebeler-matlabR.pdf
http://www.et.bs.ehu.es/~etptupaf/pub/R/RforSAS&SPSSusers.pdf
http://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
http://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
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2.4. R on different platforms 

Most functions in R are common to all platforms. On a unix platform, the graphical device 
may need to be setup with a command such as 

$ sys.putenv(“DISPLAY”=”:0.0”)  

This may not work on all machines, and other settings may need to be adjusted. 

When executing a script file from the command line in unix, the following can be used 

$ R CMD BATCH my_script_file.R 

 

Other details on differences between platforms can be found on http://www.r-
project.org/user-2006/Slides/IacusEtAl.pdf 

2.5. Commands 

In R, the command prompt is ‘>’. If you see ‘+’ instead of ‘>’, it means that the command is 
incomplete. For example, if there are unpaired brackets or inverted commas, ‘+’ will be seen 
instead of ‘>’. Commands can either run by typing them directly into the console or by typing 
them into the R editor then highlighting, right-clicking and selecting the option ‘run 
selection’. 

The output of a command can either be immediately printed to the screen or it can be stored 
in a variable. 

For example, the output of a command ‘mean’ can either be immediately printed to the 
screen (in which case it is not stored) or it can be stored in a variable (in this case the variable 
named ‘answer’) and later accessed by typing the variable name at the command prompt. 

> mean(5,6,7) 

[1] 5 

> mean(5,6,7)->answer 

> answer 

[1] 5 

In R, the output of a command can be assigned to a variable with ‘->’ or ‘=’. Direction of 
assignment does not matter, hence ‘a<-5’ is equivalent to ‘5->a’, both assign the value of 5 to 
the variable ‘a’.  

Of note, all alphanumeric symbols are allowed in variable names, in addition to ‘.’ And ‘_’. 
However, variable names cannot start with a number eg. ‘a2’ is allowed but not ‘2a’  

Commands can be separated by a new line or by a semi-colon(;). They can be commented out 
with a hashmark(#). 

R has a command history function, in which previously issued commands can be recalled 
with the 2 vertical keys.  

2.6. Getting Help 

 

To get help on any specific function, use the command ‘help’ or ‘?’. For example, to search for 
help on the command ‘sum’, at the command line, type 

> help(sum) or 

> ?sum 

This will bring up the help page http://127.0.0.1:26807/library/base/html/sum.html 

http://www.r-project.org/user-2006/Slides/IacusEtAl.pdf
http://www.r-project.org/user-2006/Slides/IacusEtAl.pdf
http://127.0.0.1:26807/library/base/html/sum.html
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This page contains several sections 

 

 

 

 

sum {base} R Documentation 

Sum of Vector Elements 

Description 

sum returns the sum of all the values present in its arguments. 

Usage 
sum(..., na.rm = FALSE) 

Arguments 

... numeric or complex or logical vectors. 

na.rm logical. Should missing values (including NaN) be removed? 

Details 

This is a generic function: methods can be defined for it directly or via 

the Summary group generic. For this to work properly, the arguments ... should be 

unnamed, and dispatch is on the first argument. 

If na.rm is FALSE an NA or NaN value in any of the arguments will cause a value 

of NA or NaN to be returned, otherwise NA and NaN values are ignored. 

Logical true values are regarded as one, false values as zero. For historical 

reasons, NULL is accepted and treated as if it were integer(0). 

Value 

The sum. If all of ... are of type integer or logical, then the sum is integer, and in 

that case the result will be NA (with a warning) if integer overflow occurs. 

Otherwise it is a length-one numeric or complex vector. 

NB: the sum of an empty set is zero, by definition. 

This refers to the package 

from which the function 

comes 

This shows how the function is used, together with the default 

settings. In this case, NAs are not removed by default. If 

removal is wished, use ‘na.rm=TRUE’ 

This refers to input 

arguments of the function  

This refers to output of the function  

This provides further details on the function, including 

appropriate usage and meaning of default settings 

This refers to the class of the function. This information is 

not usually needed by the general user. 

http://127.0.0.1:26807/library/base/help/S3groupGeneric
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S4 methods 

This is part of the S4 Summary group generic. Methods for it must use the 

signature x, ..., na.rm. 

 

‘plotmath’ for the use of sum in plot annotation.  

References 

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. 

Wadsworth & Brooks/Cole. 

See Also 

colSums for row and column sums. 

 
[Package base version 2.14.2 Index] 

 

 

This section contains related functions and is 

often useful to explore as  there may be 

combined functions that save you writing code 

This section references, and is especially useful for recently 

developed statistical tools 

http://127.0.0.1:26807/library/base/help/S4groupGeneric
http://127.0.0.1:26807/library/base/help/plotmath
http://127.0.0.1:26807/library/base/help/colSums
http://127.0.0.1:26807/library/base/html/00Index.html
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Exercise 1 Getting Started 

In this exercise, we will explore the graphical user interface in R and the help functions 

  Task 1

Open the R console; 
Learn how to use the 
help facility 

  Step 1

Open R. Click on the  Star t   button on the Task Bar then click on R. 

This will bring up the R console.  

 

  Step 2

At the console, type 

> help.start() 

This will bring up a html page from the official CRAN website 

http://127.0.0.1:31317/doc/html/index.html 

Navigate to the link ‘An Introduction to R’. This link contains an 
immense amount of helpful information, inaddition to a Sample 
Session in Appendix A which should be worked through when you 
have the time. 

  Step 3

We will be using the save() command later. In the R console, type  

>?save()  

to bring up the html page on save(). What are the differences between 
the save.image() and save() commands?  

http://127.0.0.1:31317/doc/html/index.html
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3 Basic Data Structures 

3.1. Vectors 

3.1.1. Creating numerical vectors 

The simplest data structure in R is the numerical vector. This can be created with the c() 
command or with the assign command. The statements below are equivalent. 

> x <- c(5,4,3,2,1)  

> assign("x", c(5,4,3,2,1)) 

 

Sequences or repeats of numbers can be generated in R. To generate a sequence of 
consecutive numbers, either the colon operator or the function seq() can be used. If the 
sequence has steps of greater than 1, the seq() command can be used with a third argument.  

 

> a<-c(1:10) ## this produces a sequence of 1 to 10 in steps of 1 

> a 

 [1]  1  2  3  4  5  6  7  8  9 10  

> a<-seq(1,10) ## this achieves the same effect as the command above 

> a 

 [1]  1  2  3  4  5  6  7  8  9 10  

> b<-seq(1,10,2) ## this produces a sequence of 1 to 10 in steps of 2 

> b 

[1] 1 3 5 7 9 

> d<-rep(1,10) ## this produces a vector of 10 ‘ones’ 

> d 

 [1] 1 1 1 1 1 1 1 1 1 1 

Vectors or parts of vectors can be concatenated together, with the c() command 

> c(y,y,5)->y2 

> y2 

 [1] 5 4 3 2 1 5 4 3 2 1 5 

 

An empty vector can also be created and populated with numbers. This is useful when writing 
loops in which the result of repeated calculations are used to populate a vector. 

 

> my_vector <- vector() ## creates empty vector 

> my_vector[1] <- 42 ## inserts the value of 42 into the first slot of the 

vector 

> my_vector[2] <- 43 ## inserts the value of 43 into the second slot of the 

vector 

> length(my_vector) ## checks the length of the vector 

[1] 2 
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3.1.2. Accessing elements of numerical vectors 

To access each element of the vector, square brackets are used. To access a few elements of 
the vector, a colon can be used. 

> y <- x[5] ## this assigns the value of 1 to y since the fifth element of 

x is 1 

> z <- x[1:3] ## this creates a new vector z with 3 numbers – 5,4,3 

Index vectors can be created to select specific elements within a vector. There are different 
types of index vectors.  

a) Logical index vectors 

A logical index vector is comprised of a series of ‘TRUE’ and ‘FALSE’ elements. 

 

> a<-seq(1,10) ## produces sequence of numbers from 1 to 10 

> a<7 -> b ## creates a logical vector based on the conditions provided 

> b 

 [1]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE 

> a[b] 

> [1] 1 2 3 4 5 6 

> a[a<7]  ## combines the above steps 

 [1] 1 2 3 4 5 6 

 

b) Vector of positive integers 

In this case, the values in the index vector must be smaller than the length of the vector being 
indexed. The elements that correspond to the elements of the index vector are concatenated 
into a new vector 

 

> primary.vector <- seq(1,10,2) 

> index.vector <- c(1,3,5) 

> primary.vector 

[1] 1 3 5 7 9 

> primary.vector[index.vector] 

[1] 1 5 9 

 

c) Vector of negative integers 

This specifies the values to be excluded.  

 

> index.vector <- c(-1,-3,-5) 

> primary.vector[index.vector] 

[1] 3 7 



R: An Introduction  TMMJ 

 15 IT Services 

3.1.3. Arithmetic operations on numerical vectors 

Arithmetic operations can be performed on vectors. These are performed on each number 
within the vector. In the example below, 1 is subtracted from each number within the vector 
y2. 

 

> y2-1 

 [1] 4 3 2 1 0 4 3 2 1 0 4 

 

 

Caution: When shorter vectors are used in the expression, they are recycled. In the example 
below, the numbers in y are added individually to the numbers in y2, with the first number of 
y added to the first number of y2, the second number of y added to the second number of y2 
etc, until the fifth number of y is reached. After that, the first number of y is added to the 
sixth number of y2. While other environments may generate a warning message when vectors 
of different lengths are added together, R will not generate such warnings. As such, users are 
more prone to errors since it is more likely that one has wrongly tried to added 2 vectors of 
different lengths rather than wanting one vector to be fractionally recycled to be added to 
another vector.  

 

The use of the term ‘vector’ and later ‘matrix’ in this context does not pertain to linear 
algebra. The vector operations performed with the commands detailed above are strictly for 
element-wise operations. Linear algebra commands are different. For example, the symbol 
for matrix multiplication is %*%. While linear algebra is beyond the scope of this course, an 
excellent guide to Linear Algebra in R can be found in the link below. 

http://bendixcarstensen.com/APC/linalg-notes-BxC.pdf 

3.1.4. Useful vector commands 

The length() command will find the length of the vector 

> length(y2) 

> [1] 11 

The max() command will find the largest element of the vector 

> max(y2) 

> [1] 5 

The min() command will find the smallest element of the vector 

> min(y2) 

> [1] 1 

The sum() command will find the sum of all elements in the vector 

> sum(y2) 

> [1] 35 

The mean() command will find the average of all elements in the vector 

> mean(y2) 

[1] 3 

The sd() command will find the standard deviation of all elements in the vector 

> sd(y2) 

http://bendixcarstensen.com/APC/linalg-notes-BxC.pdf


TMMJ R: An Introduction 

IT services 16  

 [1] 1.490712 

The sort() command returns vector sorted in numerical order 

> sort(y2) 

 [1] 1 1 2 2 3 3 4 4 5 5 5 

3.2. Lists 

A list is an ordered collection of objects known as components. Lists are like vectors except 
for a few differences… 

a) Different types of objects can be concatenated into lists eg. a list can consist of a 
numeric vector, a matrix and a character string. The components of a vector all have 
to be of the same type eg. all numbers, all characters etc. 

b) The components of a list are accessed by double square brackets ([[ ]]) whereas the 
components of a vector are accessed with single square brackets ([ ]) 

c) Linear algebra can be performed on vectors of numbers but not lists of numbers 

d) Lists are recursive, meaning that one can create a list of lists of lists. This is not 
possible with vectors. 

e) Components of lists can be accessed by name through the $ operator. This is not 
possible with a vector  

 

> list() -> my_list ## creates an empty list 

> 42 -> my_list[[1]] ## populates the list with numbers 

> 43 -> my_list[[2]] 

> names(my_list) <- c("first_entry","second_entry") ## assigns names to the 

list components 

> my_list$first_entry ## accesses components of the list using the name 

[1] 42 

 

 

Caution: When to use lists and when to use vectors? 

When performing mathematical or statistical calculations, it is easier to use vectors because 
one will be sure that all components of the vector will be of the numerical type and one can 
perform linear algebra with them. Lists are useful when manipulating data that includes 
different types of  information eg. databases of names, addresses, ages etc. 

 

 

3.3. Matrices 

An array is a subscripted collection of data elements. A matrix is a 2 dimensional array. Since 
matrices are the most commonly used form of array, we will describe matrices in detail.  

3.3.1. Creating matrices 

Arrays and matrices can be created with the array and matrix commands respectively. Note 
that the if byrow=TRUE for the matrix() function, the data will be entered by row, if 
byrow=FALSE, it will be entered by column, like the array() function. 
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> my_matrix <- matrix(c(1,2,3, 7,8,9), nrow = 2, ncol=3, byrow=TRUE) 

> my_matrix 

     [,1] [,2] [,3] 

[1,]    1    2    3 

[2,]    7    8    9 

> my_array <- array(c(1,7,2,8,3,9), c(2,3)) 

>my_array 

       [,1] [,2] [,3] 

[1,]    1    2    3 

[2,]    7    8    9 

 

An empty matrix can be created and populated with data 

 

> my_matrix <- matrix(nrow=3,ncol=3) 

> my_matrix[2,2] <- 42 

> my_matrix 

     [,1] [,2] [,3]  

[1,]   NA   NA   NA 

[2,]   NA   42   NA 

[3,]   NA   NA   NA 

 

R inserts NA for any unpopulated elements in a matrix or vector 

A matrix can also be created by binding vectors or matrices together using the cbind() or 
rbind() functions which binds vectors in terms of columns and rows respectively. 

 

> rbind(my_matrix,my_matrix) ->combined_matrix 

> combined_matrix 

     [,1] [,2] [,3] 

[1,]    1    2    3 

[2,]    7    8    9 

[3,]    1    2    3 

[4,]    7    8    9 

 

Names can be assigned to the rows and columns of a matrix with the commands rownames() 
and colnames(). 

 

> rbind(my_matrix,my_matrix) ->combined_matrix 

> rownames(combined_matrix) <- 

c("basket_1","basket_2","basket_3","basket_4") 

> colnames(combined_matrix) <- 

c("number_of_apples","number_of_oranges","number_of_pears") 
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> combined_matrix 

         number_of_apples number_of_oranges number_of_pears 

basket_1                1                 2               3 

basket_2                7                 8               9 

basket_3                1                 2               3 

basket_4                7                 8               9 

 

3.3.2. Accessing elements of a matrix 

The elements of a matrix can be accessed with 2 numbers separated in a square bracket 
separated by a comma, with the first number being the row and the second number being the 
column. 

> combined_matrix[2,1]  

[1] 7 

Similar, several entries can be accessed at once with a colon, in the same way as a vector 

> combined_matrix[2,1:3] 

[1] 7 8 9 

Elements can be accessed conditionally too. 

For example, if one wanted to replace all numbers smaller than 3 with 0, this can be done 

 

> combined_matrix[combined_matrix<3] <-0 

> combined_matrix 

     [,1] [,2] [,3] 

[1,]    0    0    3 

[2,]    7    8    9 

[3,]    0    0    3 

[4,]    7    8    9 

 

R does this by creating an index matrix of TRUE and FALSE depending on the condition 
imposed. 

 

> combined_matrix<3 

      [,1]  [,2]  [,3] 

[1,]  TRUE  TRUE FALSE 

[2,] FALSE FALSE FALSE 

[3,]  TRUE  TRUE FALSE 

[4,] FALSE FALSE FALSE 

 

This can also be performed on selected rows or columns. The example below uses the original 
object ‘combined_matrix’ and replaces numbers less than 3 with 0 only in the first row. 
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> combined_matrix[1,which(combined_matrix[1,]<3)] <-0 

> combined_matrix 

     [,1] [,2] [,3] 

[1,]    0    0    3 

[2,]    7    8    9 

[3,]    1    2    3 

[4,]    7    8    9 

 

In this way, matrix elements can be accessed or modified according to conditions in other 
matrices. For example, if one had a matrix of gene expression values as well as a separate 
matrix of ‘YES’ and ‘NO’ to indicate whether a particular measurement is valid or not, one 
could insert a number representing an invalid measurement eg. ‘-999’ into the matrix of gene 
expression values depending on whether the corresponding word was ‘YES’ or ‘NO’ in the 
validity matrix. 

An example is given below 

 

> validity_matrix 

     [,1]  [,2]  [,3]  

[1,] "YES" "YES" "NO"  

[2,] "NO"  "YES" "YES" 

> measurement_matrix 

     [,1] [,2] [,3] 

[1,]    4    4    3 

[2,]    6    6    7 

> measurement_matrix[validity_matrix=="NO"] <- -999 ## this inserts the value ‘-999’ into 
the measurement matrix to represent entries that correspond to ‘NO’ in the validity matrix. 
Note that the conditional operator for equals to is ‘==’, like in most other environments. 

> measurement_matrix 

     [,1] [,2] [,3] 

[1,]    4    4 -999 

[2,] -999    6    7 

 

3.3.3. Useful matrix commands 

The dim() command outputs the dimensions of the matrix, just as the ‘length’ command 
outputs the length of the matrix. 

> dim(measurement_matrix) 

[1] 2 3 

The order() command returns an index of the numerical order. This is especially useful as the 
matrix can be sorted in ascending or descending or of a particular column (or row). For 
example, if one took example of fruits in a basket in section 3.3.1, one could order the baskets 
in terms of the number of oranges in them 
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> combined_matrix 

         number_of_apples number_of_oranges number_of_pears 

basket_1                1                 2               3 

basket_2                7                 8               9 

basket_3                1                 2               3 

basket_4                7                 8               9 

> combined_matrix[order(combined_matrix[,2]),]-> 

combined_matrix_orange_ordered 

> combined_matrix_orange_ordered 

         number_of_apples number_of_oranges number_of_pears 

basket_1                1                 2               3 

basket_3                1                 2               3 

basket_2                7                 8               9 

basket_4                7                 8               9 

 

The functions rowMeans, colMeans, colSums and rowSums are usefully in finding the 
average of rows/columns and the sums of rows/columns respectively 

 

> colMeans(combined_matrix_orange_ordered) 

 number_of_apples number_of_oranges   number_of_pears  

    4                 5                 6  

> rowMeans(combined_matrix_orange_ordered) 

basket_1 basket_3 basket_2 basket_4  

       2        2        8        8  

> colSums(combined_matrix_orange_ordered) 

 number_of_apples number_of_oranges   number_of_pears  

               16                20                24  

> rowSums(combined_matrix_orange_ordered) 

basket_1 basket_3 basket_2 basket_4  

       6        6       24       24 

 

The function t() is useful in transposing the matrix so that the rows become columns and the 
columns become rows. 

 

> t(combined_matrix_orange_ordered) -> 

combined_matrix_orange_ordered_transposed 

> combined_matrix_orange_ordered_transposed 

                  basket_1 basket_3 basket_2 basket_4 

number_of_apples         1        1        7        7 

number_of_oranges        2        2        8        8 

number_of_pears          3        3        9        9 
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Caution: All components of a matrix have to be of the same type. If a character is inserted 
into a matrix of numbers, all components of the matrix will be coerced into a character type.  

The type of object can be checked with the following commands – is.numeric, is.character, 
is.matrix, is.list, is.vector.  

 

> is.numeric(combined_matrix_orange_ordered[1,3]) ## this checks the type 

of element in the matrix at index [1,3] 

[1] TRUE 

> combined_matrix_orange_ordered[1,1] <- "unknown" ## this inserts the 

character string into the matrix at index[1,1], hence coercing all other 

elements of the index into character type 

> combined_matrix_orange_ordered 

         number_of_apples number_of_oranges number_of_pears 

basket_1 "unknown"        "2"               "3"             

basket_3 "1"              "2"               "3"             

basket_2 "7"              "8"               "9"             

basket_4 "7"              "8"               "9"             

> is.numeric(combined_matrix_orange_ordered[1,3]) ## this demonstrates that 

the elements in the matrix are now no longer numeric type, but are 

character type 

[1] FALSE 

> is.character(combined_matrix_orange_ordered[1,3]) 

[1] TRUE 

 

The command typeof() can be used to find the type an object is. However, it may not give full 
information eg. in the case of a character matrix, it will just report ‘character’. 

3.4. Data frames 

A data  frame is like a matrix that may contain elements of different types.  

Data frames can be constructed with the function data.frame(). Alternatively, a list can be 
coerced into a data frame using the function as.data.frame() 

Data can be read into R to form a data frame using the read.table() function (discussed later). 

When dealing with data frames (unlike matrices), the attach() and detach() functions allow 
for a database to be loaded into R as a copy and modified temporarily without changing the 
original database.  

3.5. Factors 

A factor is a vector object used to specify grouping of the components of other vectors. An 
example is given below 

 

> c("chocolate","vanilla","chocolate","strawberry","vanilla","vanilla","cho 

colate") -> flavours 

> factor(flavours) -> fflavours 

> fflavours 
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[1] chocolate  vanilla    chocolate  strawberry vanilla    vanilla    

chocolate  

Levels: chocolate strawberry vanilla 

Factors can also be constructed from a vector of numbers eg.  

> y<-c(3,3,5,6,6) ## creates a vector of numbers 

> y 

[1] 3 3 5 6 6 

> as.factor(y) -> y.f ## converts these numbers to factors 

> y.f 

[1] 3 3 5 6 6 

Levels: 3 5 6 

 

 

Caution: as.numeric will convert factors in a different way compared to characters.  This is 
something that one has to beware of because data is sometimes read in terms of factors and 
other times in terms of characters (depending on the settings). Applying ‘as.numeric’ to a 
string of factors believed to be characters will provide an unexpected result. The example  
shown below is based on the vector ‘y.f’ created above. 

> as.numeric(y.f) ## converts these factors back to numbers (a different set of numbers will 
result) 

[1] 1 1 2 3 3 

> as.numeric(as.character(y.f)) ## converts these factors back to numbers (original set of 
numbers will result) 

[1] 3 3 5 6 6 

 

Exercise 2 Vectors and Matrices 

In this exercise, we will explore vector and matrix manipulations in R 

  Task 1

Explore the properties of 
a vector 

  Step 1

The ‘WWWusage’ dataset provides a time series of the number of users 
connected to the internet through a server each minute. Find out how 
many entries there are in this vector with the command 
________________ 

  Step 2

Find the average of all the entries with the command 

________________ 

  Step 3

Extract the 40th to 60th entry in the vector and find that median of 
those 21 entries with the command 

________________   



R: An Introduction  TMMJ 

 23 IT Services 

  Task 2

Explore the properties of 
a matrix 

  Step 1

The WorldPhones dataset describes the number of telephones in each 
region of the world (in the thousands). Find the dimensions of the 
dataset with the command 

________________ 

  Step 2

Find the difference between the number of phones in the two regions 
with the highest and lowest number of phones respectively in 1957 

________________ 

  Step 3

In which year did Africa have 1411 thousand phones? 

________________ 

  Step 4

Which area had 45939 thousand phones in 1951? 

________________ 

  Step 5

Find the total number of phones in all areas in 1959 

_________________ 
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4 Reading and Writing data 

4.1. Reading Text Files 

Text files can be read into R with the read.table() command. There are several options that 
can be supplied with this command 

a) skip – this refers to the number of lines in the file that should be skipped before the 
actual data is input (default is zero) 

b) header – this refers to whether the first line should be read in as column names (R 
will count the number of entries in the first and second row, setting this to true if 
there are 1 fewer entries in the first row than the subsequent rows) 

c) fill – this refers to whether rows which have fewer entries than others are filled with 
blank fields (if this is not explicitly stated and there are rows with fewer fields than 
others, R will produce a warning message) 

d) na.strings – this refers to the character string that symbolises ‘not applicable’. The 
default setting is “NA”. 

e) sep – this is the field separator. The default setting is whitespace ie. “ “ 

The file is read into R and a dataframe is created. This can be converted to a matrix with the 
as.matrix() command. This is useful when mathematical operations are performed on the 
data.  

When reading tab delimited text files rather than white-space delimited text files, the 
command read.delim() can be used. In read.delim(), the default setting for sep is “\t”. When 
reading a file with comma-separated values, the command read.csv() can be used.  

Caution: It is always a good idea to check whether your file has been read in correctly using 
command such as these 

head(x,n=yL) – prints first y lines of x 

head(x,n=yL) – prints last y lines of x 

summary(x) – this provides further information about the objects depending on its class. In 
the case of a numerical matrix, it supplies information on the measures of central tendency 
and spread 

4.2. Reading built-in data 

There are several datasets automatically supplied with R, for testing purposes. These datasets 
can be accessed with the command ‘data().’ The specific dataset can be loaded into R as 
follows… 

> data(AirPassengers) 

This creates an object called AirPassengers containing the built-in data.  

Some R packages also contain built in data. This can be viewed using the 
data(package=”package_name”) command. The data can then be loaded in using the 
data(dataset_name, package=”package_name”) command. 

4.3. Editing Data in Spreadsheet style 

Data can be edited in a spreadsheet-like environment with the command  

>edit(data_old) -> data_new 
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In this way, the final object is assigned to data_new. If the objective is to alter the original 
dataset, the command fix(data_old), which is equivalent to  

>edit(data_old) -> data_old 

4.4. Writing out data 

Data can be written out into a text file using the write.table() command. Like the read.table() 
command, there are several options that can be used.  

Append – if true, the output is appended to the file of the same name. If false, the existing file 
is destroyed and replaced by the new file (default is false) 

Quote – This determines whether characters are surrounded by double quotes (default is 
true) 

Sep – This determines what the field separator string is (default is whitespace “”) 

Eol – This determines the character to be printed at the end of each line (default is “\n”) 

Row.names – this determines whether the row names of x are to be written out 

Col.names = this determine s whether the column names are to be written out 

Write.csv() can be used to create a comma-separated-value file that is readable by Microsoft 
Excel. 

Exercise 3 Reading and Writing Files 

In this exercise, we will explore reading and writing data into R  

  Task 1

Reading data 

  Step 1

The text file ‘expenditure.txt’ contains the personal expenditure of US 
citizens in the 1940s to 1960s. 

Open the file in Microsoft notepad to check the format, in particular 
whether it has a header row. 

  Step 2

In R, read the file into an object called ‘x’ with the command 

_______________ 

  Step 3

In R, find the standard deviation of Health and Medical Expenditure 
through all the years represented in the data with the command 

________________   

  Step 4

Open the csv file ‘expenditure.csv’ in Microsoft Excel. Read it into R 
with the read.csv() command. Check that the resulting object is similar 
to the object read in from the text file. 

  Task 2

Writing data 

  Step 1

The Puromycin data frame has 23 rows and 3 columns of the reaction 
velocity versus substrate concentration in an enzymatic reaction 
involving untreated cells or cells treated with Puromycin. There are 3 
columns – substrate concentration, rate and state (treated vs 
untreated). Explore the structure of this dataset with the head() and 
summary() commands 
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  Step 2

Create a matrix with the rows of the puromycin dataframe that have 
‘treated’ in the third column with the following command. 

________________ 

  Step 3

Write out this matrix into a text file with the following command 

________________ 

Open this text file in Microsoft Notepad and check that it contains 
what you expected. 

  Step 4

Create a matrix with the rows of the puromycin dataframe that have a 
rate of greater than 100 counts/min/min with the following command 

________________ 

  Step 5

Write out this matrix into a csv file with the following command 

________________ 

Open this csv file in Microsoft Excel and check that it contains what 
you expected. 
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5 Scripts, Objects and the Workspace 
 

5.1. Objects and the Workspace 

The basic unit that is manipulated in R is an object. An object can be a variable, a function, or 
general structure built from different components. In an R session, objects are created and 
stored. They can be accessed with the ls() command. 

To remove an object, the command rm() can be used. To clear the workspace of all objects, 
the command rm(list=ls()) can be used.  

The objects used in a session (and the command history) can be stored in a file with the 
command save.image(). The objects can be reloaded to the workspace with the command 
load(). If one wishes to save specific objects, this can be performed with the save() command 
and a list of objects as the argument. 

An example is given below. 

 
> a<-1 

> b<-2 

> c<-3 

> d<-4 

> ls() 

[1] "a" "b" "c" "d" ## this lists the objects in the current workspace 

> save.image("my_workspace.RData") ## this saves all the objects in the 

current workspace 

> rm(list=ls()) ## this clears the workspace of all objects 

> ls() ## this lists the objects in the workspace (none at present) 

character(0) 

> load("my_workspace.RData") ## this loads up the stored workspace file 

> ls() ## the objects stored within the workspace file are loaded into the 

current workspace 

[1] "a" "b" "c" "d" 

> rm(d) ## this removes the object ‘d’ 

> ls() 

[1] "a" "b" "c" 

> save("a","b",file="my_objects.Rd") ## this selectively stores 2 objects – 

a and b 

> rm(list=ls()) 

> load("my_objects.Rd") ## this loads up the 2 objects stored in the Rd 

file 

> ls() 

[1] "a" "b" 

 
 

The R workspace has memory limits (dependent on the machine it is run on), which means 
that extremely large datasets may have to be analysed in chunks. The command 
memory.size() provides the total amount of memory used by R while the command 
memory.limit() provides the memory limit for the workspace. The memory limit can be 
altered by providing the command memory.limit () with an argument eg. 

 

> memory.size() ## this reports the memory currently used 

[1] 14.81 

> memory.limit() ## this reports the memory limit of the workspace 
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[1] 3583 

> memory.limit(3600) ## this changes the limit to the value of the argument 

supplied 

[1] 3600 

> memory.limit() ## this reports the new memory limit 

[1] 3600 

 

To end the session, the command q() is used. At this point, you will be prompted with a 
question ‘Save Workspace Image?’ If you click on yes, all objects in the workspace are written 
to a file called ‘.RData’ and the command lines are written to a file called ‘.Rhistory’. When R 
is started from the same directory, both files are automatically loaded.  

 

Caution: It is a good idea to store your workspaces separately according to project rather than 
‘.Rhistory’ or ‘.Rdata’ since variables with common names eg. ‘x’ or ‘foo’ may take on different 
values for different projects, leading to mistaken identities. When saving a script file, the ‘.R’ 
extension has to be added explicitly as R will not add it for you, unlike the addition of ‘.doc’ 
by Microsoft word or ‘.xls’ by Microsoft Excel. 

5.2. Directories 

When loading workspace files or script files, R has to be started within the directory that the 
files are stored. To check which directory R is in, one can use the command getwd(). To 
change directory within R, one can use the command setwd(). 

If one does not wish to change directory, an alternative is to use the full path to the file when 
loading it into R. 

An example is given below.  

 

> getwd() ## this prints the current directory that R is in 

[1] "C:/Me/u0302066/Documents" 

> setwd("C:/You/u0302066/Documents") ## this changes the directory 

> getwd() 

[1] "C:/You/u0302066/Documents" 

> load(“C:/Me/u0302066/Documents/my_workspace.RData”) ## this loads a 

workspace located in a different directory by stating the full path to the 

workspace 

> ls() 

[1] "a" "b" "c" "d" 

 

 

5.3. Running scripts 

So far, we have been running commands by typing them into the R editor and clicking on ‘run 
selection’ or by typing them directly in the console. Commands typed into the R editor can 
also be stored in a file, with the extension ‘.R’ and run at the console with the command 
‘source’. For example 

> source(“my_commands.R”)  
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will run all commands in the file ‘my_commands.R’ 

The function ‘sink’ can be used to divert all output from the console into a file. For example,  

> sink(“my_record.lis”)  

will divert all subsequent output to an external file ‘my_record.lis’ and the command sink() 
will restore it to the console again. 

 

 

Exercise 4 Scripts, Objects and Workspaces 

In this exercise, we will explore scripts, objects and workspaces in R 

  Task 1

Writing and executing 
scripts 

  Step 1

Click on File|New script. This opens up a box titled ‘Untitled – R 
editor’.  

  Step 2

Type into the box 

rm(list=ls()) 

a<-1 

b<-2 

ls() 

  Step 3

Execute the command by highlighting it then right click | run line or 
selection. What output do you get? ___________________ 

  Step 4

In the R editor, type in a command that creates a new variable 
‘sum_of_a_and_b’ by adding a and b together  
____________________  

  Step 5

Remove all objects in the workspace with the command 
_____________________ 

  Step 6

Save the script file as ‘my_script_file.R’ by doing File|Save as. Make 
sure that your cursor is in the R editor and not in the R console when 
you do this.  

  Step 7

Execute the script file by typing source(“my_script_file.R”) in the R 
console 

  Task 2

Saving and loading objects 

 

Step 1 

Create a 2 new variables – ‘difference_of_a_and_b’, 
’product_of_a_and_b’.  

Step 2 

Save these 2 objects in a file called ‘my_objects.Rd’ with the following 
command ________________ 

Step 3 

Quit R without saving the workspace. 
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Step 4 

Open a new session of R and load these 2 objects into the workspace 
with the following command ___________________ 
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6 Control Statements and Loops 

6.1. If/Else and Ifelse 

The if/else syntax is as follows  

 

> if (condition) expr_1 else expr_2 

An example is given below. 

 

> y<-1 

> if(y>2) x<-3 else x <-4 

> x 

[1] 4 

 

The conditional expression often contains the ‘and’ or ‘or’ operators, which are represented 
by ‘&&’ and ‘||’ (or ‘&’ and ‘|’ described later). Here is an example of how to use them. 

 

> z<-1 

> y<-1 

> if(y<2&&z<2) x<-3 else x <-4 

> x 

[1] 3    

 

The above statement can also be written in the ifelse syntax as follows 

 

> ifelse(y<2&&z<2,3,4)->x 

> x 

[1] 3 

 

Caution: The ‘and’ and ‘or’ operators can take 2 forms. ‘And’ can be represented by ‘&’ or 
‘&&’. ‘Or’ can be represented by ‘|’ or ‘||’. The ‘short circuit’ form of the operators are ‘&&’ and 
‘||’ respectively. These only evaluate the second argument if necessary, unlike ‘&’ and ‘|’, 
which evaluate both arguments. Additionally, if the arguments are vectors, ‘&’ and ‘|’ returns 
a vector of ‘TRUE’ and ‘FALSE’ while ‘&&’ and ‘||’ return a single output based on the first 
element of the vector (in addition to a warning). With that in mind, how should we decide 
which to use? For most conditional testing, the arguments are single elements rather than 
vectors, hence && can be used safely. The warning would come in useful in case you have 
unintentionally included a vector as an argument. 

 

6.2. Loops 

This can be achieved with ‘for’ or ‘while’. 
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The syntax is as follows… 

 

> for (i in n:m){expr} where n is the first value and m is the last value of i for which the 
expression within curly brackets should be evaluated 

An example is given below 

 

> my_results <- vector() ## this creates an empty vector to store results 

> my_matrix <- matrix(c(1,2,3, 7,8,9), nrow = 2, ncol=3, byrow=TRUE)  

> my_matrix ## this generates a matrix for testing purposes 

     [,1] [,2] [,3] 

[1,]    1    2    3 

[2,]    7    8    9 

> for(i in 1:3){ ##this loops through the numbers 1 to 3 

+ mean(my_matrix[,i])->my_results[i] ## this finds the mean of each column 

in the matrix 

+ print(i)} ## this prints the counter so that we know which column we are 

up to 

[1] 1 

[1] 2 

[1] 3 

> my_results 

[1] 4 5 6 

 

Printing the counter is useful especially when running very long loops, so that we are able to 
monitor and make sure that the loop is still running and has not hanged itself. 

The while syntax for the above statement is as follows 

 

> i<-1 

> while(i<4){ 

+ mean(my_matrix[,i])->my_results[i]  

+ print(i) 

+ i<-i+1} 

[1] 1 

[1] 2 

[1] 3 

> my_results 

[1] 4 5 6 

 

As you might have realised by now, both loops basically perform the same function as the 
colMeans() command. In R, there are many built-in functions that perform complicated 
operations. It is always good to do a search using the help function and look at related 
commands on the help page to see if you can avoid writing your own functions or loops. 
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An alternative to writing loops is to use the ‘apply’ command as it runs faster than loops. 

The syntax for the apply() command is  

apply(X,margin,fun) where the function ‘fun’ is applied to the matrix ‘X’ either row-wise (in 
which case margin=1) or column-wise (in which case margin=2) 

The syntax for the above loops would be 

apply(my_matrix,2,mean) -> my_result 

 

Exercise 5 Loops and If/Else statements 

In this exercise, we will explore loops and if/else statements in R  

  Task 1

Loops 

  Step 1

The dataset ‘airquality’ contains daily airquality measurements in New 
York in 1973. It is a dataframe with observation of 6 variables – mean 
ozone in parts perbillion, solar radiation, wind in miles perhour, 
temperature in degrees fahrenhait, month and day of month. View the 
first few lines of the dataset with the command head().  

  Step 2

For each day, we would like to create a hypothetical ‘wind-
temperature’ score calculated by  

Wind *2 + temperature of that day – temperature of the next day 

Write a loop to create this score for each day and store it in a vector. It 
is not necessary to calculate this value for the last day in the dataset. 
You should end up with a vector the length of the number of rows in 
the data frame minus one. 

Hint – Let the loop variable i be the row-number 

  Task 2

If else statements 

  Step 1

For each day, we would like to create a conditional score based on 
temperature and solar radiation. If the solar radiation is higher than 
150 units and the temperature is higher than 60 degrees fahrenhait, 
the score should be 1. If not, it should be 0. Write an ifelse statement to 
calculate this score for the all days in the dataset. You should end up 
with a vector of zeros and ones. The vector should be the same length 
as the number of rows in the dataset. 
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7 Working with text in R 

7.1. Characters and Strings 

So far the functions that we have described mainly discuss numerical types. In this chapter, 
we will discuss several common and useful functions for working with text in R. This will be 
useful for working with charts and graphs as described in the next chapter. 

A character is the single unit of text. Characters can be joined together to form text strings eg. 
“This is a text string” 
 
Text string can be joined together to form vectors of text strings. Of course, characters can 
also be joined together to form vectors of characters. However, joining characters to form a 
vector is not equivalent to joining characters together to form a text string. To do the latter, 
one needs the ‘paste’ command (described later). 
 
 
> "I am a text string" -> text_string_1 

> "I am another text string" -> text_string_2 ## creates 2 text strings 

> c(text_string_1,text_string_2)->text_string_vector ## joins 2 text 

strings into a vector 

> text_string_vector ## prints out the vector 

[1] "I am a text string"       "I am another text string" 

> text_string_vector[2] ## accesses the second element of the vector 

[1] "I am another text string"  

> c(text_string_vector,"I am yet another text string") -> 

text_string_vector ## adds a third text string element to the text_string 

vector 

> text_string_vector 

[1] "I am a text string"           "I am another text string"     

[3] "I am yet another text string" 

 
 
As can be seen above, adding another text string to the vector of text string does not join text 
strings together. To do that, we need the paste command. An example is given below. 
 
 
> paste(text_string_1,text_string_2,sep=" ") -> text_string_3 

> text_string_3 

[1] "I am a text string I am another text string" 

 
The separator can be changed with the ‘sep’ option. 
 
> paste(text_string_1,text_string_2,sep=" and ") -> text_string_3 

> text_string_3 

[1] "I am a text string and I am another text string" 

 
Like text strings, characters can either be pasted together or joined together to form a vector 
 
> paste("t","e","x","t","s","t","r","i","n","g",sep="") -> my_text_string 

> c("t","e","x","t","s","t","r","i","n","g") -> my_text_vector 

> my_text_string 

[1] "textstring" 

> my_text_vector 

 [1] "t" "e" "x" "t" "s" "t" "r" "i" "n" "g" 
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When files are read into R, numbers are sometimes read in as characters. These can be 
converted into numbers with the as.numeric() command. If there are any characters in the 
vector, they will be converted to “NA”.  
 

7.2. Useful commands 

7.2.1. Count number of characters in the string 

nchar() reports how many characters there are in the string 
 
> my_text_string 

[1] "textstring" 

 

> nchar(my_text_string) 

[1] 10 

7.2.2. Split the string 

 

The substr() command splits the text string with the following syntax substr(text,start,stop) 

 

 
> substr(my_text_string,1,4) 

[1] "text" 

 

 

The strsplit() command splits the text string at a delimiter with the following syntax 
strsplit(text,delimiter).  

 
> strsplit("why is are there so many ones at the end of this line"," 

")[[1]][1] 

[1] "why" 

 

 

This begs the question – why is there are need for the [[1]]? 

This is because strsplit() operates on vectors and splits each element of the vector along the 
delimiter, then creates a list with each element of the vector being each element of the list. 
Hence, if there were a vector of text strings, it would be split into a list of text strings as 
follows 

 

> text_vector<-(c("I bet R","is having a laugh")) 

> strsplit(text_vector," ") 

[[1]] 

[1] "I"   "bet" "R"   

 

[[2]] 

[1] "is"     "having" "a"      "laugh"  

 

To access the word “laugh”, we would do 

> strsplit(text_vector," ")[[2]][4] 

[1] "laugh" 
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7.2.3. Search text strings for a word 

Vectors of text strings can be searched for a word. The syntax is as follows 
grep(“search_term”,text). 

 

> grep("laugh",text_vector)  

[1] 2 

 
This reports that the word laugh is in the second text string of the vector of text strings 
 
 

Exercise 6 Text Manipulations in R 

In this exercise, we will practise manipulating text in R  

  Task 1

Working with text 
vectors and text strings 

  Step 1

The file ‘text_sample.Rd’ contains 2 objects, ‘txt1’ and ‘txt2’. Load the 
file into R with the command load(). 

  Step 2

Create a new vector by concatenating elements of each vector together. 
The new vector should read “my” “dog” “loves” “my” “cat” 

  Step 3

Paste the elements of this new vector together to create a text string 
that reads “my dog loves my cat” 

  Task 2

Splitting text 

  Step 1

Split the new string “my dog loves my cat” with the whitespace 
delimiter  “ “ 

  Step 2

Extract the second word “dog” from the output of step 1 

  Step 3

Extract the word ‘do’ from the word ‘dog’ with the substr() command  
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8 Graphs and Charts 
There are 2 different types of plotting commands – high level and low level. 
High level commands create a new plot on the graphics device, low level commands add 
information to an existing plot.  

8.1. High level plotting commands 

These always start a new plot, erasing anything already on the graphics device. Axes, labels 
and titles are created with the automatic default settings. 

8.1.1. Generic plot() command 

The plot() function is the most commonly used graphical function in R. The type of plot that 
results depends on the arguments supplied. 

If plot(x,y) is typed in, a scatterplot of y against x is produced if both are vectors. 

If plot (x) is typed in and x is a vector, the values of x will be plotted against their index. If x is 
a matrix with 2 columns, the first column will be plotted against the second column. 

Other formats include plot(x~y), plot(f,y) where f is a factor object and plot(~expr) etc. These 
can detailed in the help pages on plot. 

The women dataset gives the average heights and weights for American women aged 30–39. 
It consists of a matrix with the first column being height and the second column being 
weight. 

To produce a scatterplot representing the relationship between height and weight, we can use 
the following command 

 

> plot(women) 
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8.1.2. Boxplot 

These can be performed with the boxplot() command 

The OrchardSprays dataset in R contains information on a study on the effect of different 
concentrations of lime sulphur in repelling honey bee. There are 64 observations on 4 
variables – treatment groups (these different groups are represented by alphabets, with A 
being the highest concentration of lime sulphur, G being the lowest concentration of lime 
sulphur, H being no lime sulphur at all), response (as measured by decrease in concentration 
of sugar solution that the lime sulphur is dissolved in), row position and column position 
(latin square design) 

Boxplots express the relationship between 2 variables, one continuous and one discrete. They 
represent a five point summary - the smallest observation (sample minimum), lower quartile 
(Q1), median (Q2), upper quartile (Q3), and largest observation (sample maximum).  

 

 

In this example, we can represent the relationship between response and treatment group by  

> boxplot(decrease~treatment,data=OrchardSprays) 

The resultant boxplot shows a clear relationship between response to treatment and 
concentration of lime sulphur in the sugar solution, which differs between the groups. 

 

8.1.3. Histogram 

A histogram groups continuous variables into categories and plots them in terms of 
frequency. The bins of a histogram can be adjusted according to the distribution of data with 
the ‘breaks’ option. In this example, we can plot a histogram of the treatment response 
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> hist(OrchardSprays$decrease) 

 

 
 

There are many other plotting functions eg. 

qqplot() – does a quantile-quantile plot 

persp(x,y,z) – draws a 3D contour surface representing the relationship between 3 variables 

These different plot functions are detailed in the document http://cran.r-
project.org/doc/manuals/R-intro.pdf  

8.1.4. Options 

Various additional details can be added to the plot 

To add a title, use the ‘main’ option 

To change the axis labels, use the ‘xlab’ and ‘ylab’ options 

To change the axis margins, use the ‘xlim’ and ‘ylim’ options 

For example, the plot above can be modified with the following command 

 

 

 

 

 

 

 

 

 

 

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf


TMMJ R: An Introduction 

IT services 40  

> hist(OrchardSprays$decrease, main="Histogram of Treatment Response", 

xlab="Treatment response") 

 

 
 

The option ‘type’ can be used to modify the type of graph produced. Type=”p” is the default 
and results in individual points. Type=”l” plots lines and type=”b” plots points connected by 
lines. For example, in the case of women’s height and weight, the resultant plots are as 
follows 

> plot(women,type="l") 
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> plot(women,type="b") 

 

 
The option ‘col’ can be used to change the colour of the graph.  

For example, this command colours all the points blue. 

 

> plot(women,type="b",col=”blue”) 
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The points can also be selectively coloured by making the colour argument a vector as follows 

 
> plot(women,type="b",col=c(rep("black",7),rep("blue",8))) 

 

 

 

8.2. Low Level Plotting Functions 

 
To add additional features to plots, these commands can be used. They do not erase the 
current plot. 

Points(x,y) adds points to the plot. lines(x,y) adds lines to the plot 

For example, the command below adds the point with the corresponding coordinates to the 
plot 
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> points(64,140) 

 

 
 

Some other options for modifying the graph include 

Text() – adds text to the graph 

Legend() – adds a legend to the graph 

Abline() – adds a line in the format y=ax+b 

Polygon() – adds a polygon 

A full list can be found in the ‘Introduction to R’ manual on the R website. 

 

Exercise 7 Plotting functions in R 

In this exercise, we will explore plotting functions in R 

  Task 1

Drawing line graphs 

  Step 1

The dataset ‘longley’ contains economic variables that observed yearly 
from 1947 to 1962. Plot the GNP on the  y axis and the year on the x 
axis. Use type=”b” to create a plot with both the points and a line 
joining them. Label the axes accordingly. Give your plot an appropriate 
title. 

  Step 2

Using the command points(), add the figures for ‘Unemployed’ to the 
plot. Use type=”b” to create a plot with both points and lines joining 
them. Colour the points blue with the option ‘col’. 

  Step 3

What problem do you notice? Modify the graph limits with the ‘ylim’ 
optionand replot both lines. 

  Task 2

Drawing histograms 

  Step 1

Draw a histogram of the variable ‘Employed’. Give it an appropriate 
title and axes labels. Does it follow a Gaussian distribution? 
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9 Statistics with R 
 

9.1. Measures of Central Tendency and Spread 

These can be obtained with the following commands, which calculate the required measure 
from the vector argument supplied 

 
> test_vector <- seq(10) 

> test_vector 

 [1]  1  2  3  4  5  6  7  8  9 10 

> mean(test_vector) 

[1] 5.5 

> median(test_vector) 

[1] 5.5 

> sd(test_vector) 

[1] 3.02765 

> max(test_vector) 

[1] 10 

> min(test_vector) 

[1] 1 

> summary(test_vector) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   1.00    3.25    5.50    5.50    7.75   10.00  

 

9.2. Tests for continuous vs discrete variables 

 

9.2.1. 2 groups 

With normally distributed measurements in 2 groups, one can measure the relationship 
between continuous and discrete variables with a parametric paired or unpaired t test with 
the command t.test().  

This test has a few options. The default setting is an unpaired test but this can be changed 
with the option (paired=FALSE). The default setting is a 2 tailed test but this can be altered 
with the option (alternative=LESS or alternative=GREATER). 

When the data is not normally distributed, one would use the non-parametric Wilcoxon test 
with the commandwilcox.test, with the options paired=TRUE(Wilcoxon signed rank test), or 
paired=FALSE(Wilcoxon rank sum test, otherwise known as Mann Whitney U test). 

9.2.2. 3 or more groups 

When the data is distributed normally, one can use the parametric Analysis of Variance test 
with the command aov(). When the data is not normally distributed, one can use the non-
parametric Kruskal-Wallis test with the command kruskal.test(). 

 

The following example is from the dataset called ‘chickwts’. This describes an experiment to 
compare the effectiveness of different types of feed supplements on the growth rate of 
chickens. This dataset consists of 71 observations on 2 variables. The first variable is chick 
weight after 6 weeks and the second variable is the grouping based on the type of feed. There 
are 6 types of feeds, which can be accessed with the following command. 
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> summary(chickwts)  

     weight             feed    

 Min.   :108.0   casein   :12   

 1st Qu.:204.5   horsebean:10   

 Median :258.0   linseed  :12   

 Mean   :261.3   meatmeal :11   

 3rd Qu.:323.5   soybean  :14   

 Max.   :423.0   sunflower:12   

Let’s say we wish to find out how feed affects chick weight, one quick way to do this is to 
visualise the data with a boxplot. 

> boxplot(weight~feed,data=chickwts,las=2) ## las=2 turns the x labs 

horizontally 

 

 

Let’s say we wish to find out whether chicks fed with casein have a significantly higher weight 
than chicks fed with horsebean. 

The first step is to check whether the data is normally distributed. This can be done by 
plotting a histogram of the weights. 
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> hist(chickwts$weight) 

 

 

 

Since the data is normally distributed, we can use the unpaired t test as follows 

 

>t.test(chickwts$weight[which(chickwts$feed=="casein")],chickwts$weight[whi

ch(chickwts$feed=="horsebean")]) 

 

        Welch Two Sample t-test 

 

data:  chickwts$weight[which(chickwts$feed == "casein")] and 

chickwts$weight[which(chickwts$feed == "horsebean")]  

t = 7.3423, df = 18.36, p-value = 7.21e-07 

alternative hypothesis: true difference in means is not equal to 0  

95 percent confidence interval: 

 116.6982 210.0685  

sample estimates: 

mean of x mean of y  

 323.5833  160.2000 

 

The output provides more information about the results of the t test. The t statistic is shown, 
together with the degrees of freedom, 95% confidence interval and p value. The means of 
each of group are shown. When var.equal = FALSE (by default), the welch 2 sample test is 
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used, which is an adaptation of the Student’s t test adapted for unequal variances. If 
var.equal=TRUE, the variances are pooled. 

 

If we wish to conduct an analysis of variance amongst all the feed groups, we can use the 
following 

 

> summary(aov(chickwts$weight~chickwts$feed)) 

              Df Sum Sq Mean Sq F value   Pr(>F)     

chickwts$feed  5 231129   46226   15.37 5.94e-10 *** 

Residuals     65 195556    3009                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

This tells us that there are significant differences between at least 2 groups. However, we do 
not know which pairs of groups have differences and which do not. To do this, we can 
perform posthoc tests. 

 

>pairwise.t.test(chickwts$weight,chickwts$feed,p.adjust.method="none",pool.

sd=FALSE,var.equal=FALSE) 

 

        Pairwise comparisons using t tests with non-pooled SD  

 

data:  chickwts$weight and chickwts$feed  

 

          casein  horsebean linseed meatmeal soybean 

horsebean 7.2e-07 -         -       -        -       

linseed   0.00026 0.00687   -       -        -       

meatmeal  0.09866 0.00011   0.02933 -        -       

soybean   0.00352 0.00016   0.19799 0.22523  -       

sunflower 0.82151 1.7e-08   2.4e-05 0.04441  0.00043 

 

9.3. Tests for discrete vs discrete variables 

9.3.1. Chi Square Test 

This is used when comparing 2 discrete variables to measure whether the observed 
proportions are significantly different from the null hypothesis. There should be more than 5 
observations for each cell. The R command is chisq.test().  

9.3.2. Fisher’s Exact Test 

This is used when there are fewer than 5 observations for each cell. The command is 
fisher.test() 
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In this example, we create a 2x2 matrix of the number of male and female students in a 2 
classes – physics and biology. We would like to find out whether there is a statistical 
difference in the proportion of males compared to females in each subject class. Since there 
are more than 5 subjects in each category, we should use the chi square test. 

 

> gender_subject <- matrix(c(23,45, 25,57), nrow = 2, ncol=2, byrow=TRUE) 

> rownames(gender_subject) <- c("males","females") 

> colnames(gender_subject) <- c("physics","biology") 

> gender_subject 

        physics biology 

males        23      45 

females      25      57 

> chisq.test(gender_subject) 

 

        Pearson's Chi-squared test with Yates' continuity correction 

data:  gender_subject  

X-squared = 0.0677, df = 1, p-value = 0.7947 

 

9.4. Tests for continuous vs continuous variables 

9.4.1. Pearson Correlation 

This is used when both variables are normally distributed. The R command is 
cor.test(x,y,method=”pearson”) 

9.4.2. Spearman Correlation 

This is used when one or both variables are not normally distributed. The R command is 
cor.test(x,y,method=”spearman”) 

 

The example below comes from the ‘women’ dataset, which documents the heights and 
weights of a sample of American women.  

The first step is to check whether both height and weight variables are normally distributed. 
This can be performed as follows either with a histogram (previous example) or with the 
Shapiro wilk test. 

 

> shapiro.test(women[,1]) 

 

        Shapiro-Wilk normality test 

 

data:  women[, 1]  

W = 0.9636, p-value = 0.7545 

 

> shapiro.test(women[,2]) 
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        Shapiro-Wilk normality test 

 

data:  women[, 2]  

W = 0.9604, p-value = 0.6986 

 

Since both height and weight do not show significant deviation from normality, Pearson 
correlation can be used.  

> cor.test(women[,1],women[,2],method="pearson") 

 

        Pearson's product-moment correlation 

 

data:  women[, 1] and women[, 2]  

t = 37.8553, df = 13, p-value = 1.088e-14 

alternative hypothesis: true correlation is not equal to 0  

95 percent confidence interval: 

 0.9860970 0.9985447  

sample estimates: 

      cor  

0.9954948 

The relevant statistics can be extracted as follows 

> cor.test(women[,1],women[,2],method="pearson")$p.value 

[1] 1.088019e-14 

> cor.test(women[,1],women[,2],method="pearson")$estimate 

      cor  

0.9954948 

 

 

Caution: Correlation coefficient of zero does not necessarily mean that there is no 

relationship between the 2 variables. The scatterplots below demonstrate non-linear 

relationships between 2 variables  
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Pearson correlation = -0.09    Pearson correlation = -0.08 

 

9.5. Regression 

Fitting linear models can be performed with the command lm(). The example below 
examines regression of weight on height for the R dataset ‘women’ described above.  

 

> summary(lm(women[,1]~women[,2])) 

 

Call: 

lm(formula = women[, 1] ~ women[, 2]) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.83233 -0.26249  0.08314  0.34353  0.49790  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 25.723456   1.043746   24.64 2.68e-12 *** 

women[, 2]   0.287249   0.007588   37.85 1.09e-14 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.44 on 13 degrees of freedom 

Multiple R-squared: 0.991,      Adjusted R-squared: 0.9903  

F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14 

 

The relevant values can be extracted as follows 
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P value : summary(lm(women[,1]~women[,2]))$coeff[2,4] 

Regression coefficient: summary(lm(women[,1]~women[,2]))$coeff[2,1] 

Residuals: summary(lm(women[,1]~women[,2]))$residuals 

Other regression models can be fitted with the glm function using the ‘link’ option. The 
various options are given below. They can also be found on the glm function help page. 

binomial(link = "logit") 

gaussian(link = "identity") 

Gamma(link = "inverse") 

inverse.gaussian(link = "1/mu^2") 

poisson(link = "log") 

quasi(link = "identity", variance = "constant") 

quasibinomial(link = "logit") 

quasipoisson(link = "log") 

  

9.6. Probability Distributions 

R has a set of built-in functions related to probability distributions. 

These functions can evaluate the 

- probability density function (prefix the name with ‘d’) 

- cumulative distribution function (prefix the name with ‘p’) 

- quantile function (prefix the name with ‘q’) 

- simulate from the distribution (prefix the name with ‘r’) 

where the name refers to a set of R names eg. ‘binom’ (binomial), ‘chisq’ (chi square), ‘hyper’ 
(hypergeometric) etc. The full list can be found on the official R manual accessible here  

http://cran.r-project.org/doc/manuals/R-intro.pdf 

9.7. Other Statistical Features 

R has a large compendium of statistical features, which are constantly being added by users 
in the form of new packages (later chapter). 

Some of the commonly used statistical features include 

 Maximum likelihood models – commands depend on the model being fitted. More 
information can be found here http://www.stat.umn.edu/geyer/5931/mle/mle.pdf 

 Mixed models – the nlme package is recommended, with the functions lme() and 
nlme() 

 Local approximating regression – the loess() function performs a non-parametric 
regression 

 Principal Components Analysis/Singular Value Decomposition – The former can be 
performed with the prcomp() or princomp() function. The latter can be performed 
with the svd() function. Be careful of whether rows/columns are standardised or 
centred 

 Robust regression – Many functions are contained in the MASS package 

 Clustering – various types of clustering functions exist eg. hclust() does hierarchical 
clustering 

 Tree-based models – these can be found in packages rpart and tree 

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.stat.umn.edu/geyer/5931/mle/mle.pdf
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 Machine learning – various unsupervised learning algorithms can be easily 
implemented in R eg. support vector machines with the function svm(), neural 
networks with the package nnet(), random forests with the package randomForest 

9.8. Packages 

Many of these statistical features are found in packages developed by users. These packages 
can be installed within the R environment with the command 

> install.packages(“package_name”) 

Packages have been developed for statistical analysis in different disciplines: 

1. Bioinformatics 

Many of the packages for bioinformatics are embedded with the ‘bioconductor’ environment. 
Bioconductor can be downloaded from http://www.bioconductor.org/ 

2. Social Sciences 

Most of the functions needed for social sciences can be found in the base packages. Further 
details are here http://cran.r-project.org/web/views/SocialSciences.html 

3. Financial Engineering 

Many of the functions can be found in this suite of packages ‘R/Rmetrics’ 

These are but a few examples.  The CRAN repository contains a full list of packages that can 
be downloaded. Packages that not within that repository have to be downloaded and installed 
manually with by clicking on Packages|Instal l  packages from local  z ip f i le  

 

Exercise 8 Statistics in R 

In this exercise, we will explore statistics in R 

  Task 1

Comparing 2 groups 

  Step 1

The text file ‘district.txt’ contains the ages of residents in 2 different 
districts. Plot the ages as a histogram to asses normality. 

  Step 2

Use the appropriate test to check whether there is a statistically 
significant difference between the ages of residents in the 2 districts.  

  Task 2

Correlation 

  Step 1

The file ‘ageweight.txt’ contains information about the age and weights 
of participants in a clinical study. There are 2 groups of participants – 
healthy controls and patients with carpal tunnel syndrome. Plot the 
age variable vs the weight variable on a graph to assess if the 
relationship is linear. 

  Step 2

Create histograms of ages and weights to assess whether these 
variables have a normal distribution. What correlation test is 
appropriate for this situation? 

  Step 3

Perform the correlation test on the whole dataset 

  Step 4

Perform the correlation test separately on patients and on controls 

 

http://www.bioconductor.org/
http://cran.r-project.org/web/views/SocialSciences.html
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10 Writing your own functions 
 

When you need to perform a repeated function in R, a function can be written to perform 
this. The syntax to write a function is  

 

my_function <- functionx(x){ 

commands(x) -> y 

return(y)} 

Taking the example in the ‘loops’ exercise 

The dataset in question is ‘airquality’ 

> head(airquality) 

  Ozone Solar.R Wind Temp Month Day 

1    41     190  7.4   67     5   1 

2    36     118  8.0   72     5   2 

3    12     149 12.6   74     5   3 

4    18     313 11.5   62     5   4 

5    NA      NA 14.3   56     5   5 

6    28      NA 14.9   66     5   6 

 

For each day, we would like to create a conditional score based on temperature and solar 
radiation. If the solar radiation is higher than 150 units and the temperature is higher than 
60 degrees fahrenhait, the score should be 1. If not, it should be 0. Write an ifelse statement 
to calculate this score for the all days in the dataset. You should end up with a vector of zeros 
and ones. The vector should be the same length as the number of rows in the dataset. 

Instead of writing a loop, we can write a function and apply it to the matrix. The argument to 
the function would be row of the matrix 

The function would be written as follows 

 

calc_score <- function(x){ 

ifelse(x[2]>150|x[4]>60,1,0) -> y 

return(y)} 

The function can then be applied to the matrix as follows 

apply(airquality, 1, calc_score) -> result 
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11 References 
 

The manual titled “An Introduction to R” located on the official R website at http://cran.r-
project.org/doc/manuals/R-intro.pdf is the main reference used in the creation of this 
document. Other references, with hyperlinks, are documented in the relevant text passages.  
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