

R: An Introduction

TMMJ R: An Introduction

IT services 2

How to Use this User Guide

This handbook accompanies the taught sessions for the course. Each section
contains a brief overview of a topic for your reference and then one or more
exercises.

Exercises are arranged as follows:

 A title and brief overview of the tasks to be carried out;

 A numbered set of tasks, together with a brief description of each;

 A numbered set of detailed steps that will achieve each task.

Some exercises, particularly those within the same section, assume that you have
completed earlier exercises. Your teacher will direct you to the location of files
that are needed for the exercises. If you have any problems with the text or the
exercises, please ask the teacher or one of the demonstrators for help.

This book includes plenty of exercise activities – more than can usually be
completed during the hands-on sessions of the course. You should select some to
try during the course, while the teacher and demonstrator(s) are around to guide
you. Later, you may attend follow-up sessions at IT Services called Computer8,
where you can continue work on the exercises, with some support from IT
teachers. Other exercises are for you to try on your own, as a reminder or an
extension of the work done during the course.

Text Conventions

A number of conventions are used to help you to be clear about what you need to
do in each step of a task.

 In general, the word press indicates you need to press a key on the
keyboard. Click, choose or select refer to using the mouse and clicking
on items on the screen. If you have more than one mouse button, click
usually refers to the left button unless stated otherwise.

 Labels and titles on the screen are shown l ike this .

 Drop-down menu options are indicated by the name of the options
separated by a vertical bar, for example Fi le|Pr int . In this example you
need to select the option Print from the Fi le menu or tab. To do this, click
when the mouse pointer is on the Fi le menu or tab name; move the
pointer to Print ; when Print is highlighted, click the mouse button again.

 A button to be clicked will look l ike this .

 The names of software packages are identified like this, and the names of
files to be used l ike this .

 Boxes with the broken borders have examples contained within.

 Boxes with double borders have cautionary exposition within.

Software Used

R 2.14.0 or later versions

Files Used

text_sample.Rd, age_weight.txt, district.txt, expenditure.txt, expenditure.csv

R: An Introduction TMMJ

 3 IT Services

The other datasets used have been preloaded in the R package ‘datasets’. To list all the
datasets available, use the command

> data()

This will bring up a window listing the datasets and providing a short description of each. To
obtain a more detailed description, use the command help(). For example, the line below
brings up a html file describing the ‘Biochemical Oxygen Demand’ experiment in greater
detail.

> help(“BOD”)

Revision Information

Version Date Author Changes made

2.0 Jan 2013 Esther Ng Created

Copyright

Esther Ng makes this document available under a Creative Commons licence: Attribution,
Non-Commercial, No Derivatives. Individual resources are subject to their own licencing
conditions as listed below.

Acknowledgements

David Baker, Denise Cattell and Kathryn Wenczek for their help in organising the course and
putting the course notes together

TMMJ R: An Introduction

IT services 4

Contents

1 Introduction ... 7

1.1. What you should already know .. 7

1.2. What will you learn?... 7

2 Getting Started ... 8

2.1. What is R? .. 8

2.1.1. Advantages .. 8

2.1.2. Disadvantages .. 8

2.2. Download and Installation .. 8

2.3. R and other tools/languages .. 8

2.3.1. Matlab ... 8

2.3.2. SPSS/SAS ... 8

2.3.3. C++... 8

2.4. R on different platforms .. 9

2.5. Commands ... 9

2.6. Getting Help ... 9

Exercise 1 Getting Started ... 12

3 Basic Data Structures ... 13

3.1. Vectors ... 13

3.1.1. Creating numerical vectors .. 13

3.1.2. Accessing elements of numerical vectors ..14

3.1.3. Arithmetic operations on numerical vectors 15

3.1.4. Useful vector commands ... 15

3.2. Lists ...16

3.3. Matrices...16

3.3.1. Creating matrices ..16

3.3.2. Accessing elements of a matrix .. 18

3.3.3. Useful matrix commands ..19

3.4. Data frames ... 21

3.5. Factors ... 21

Exercise 2 Vectors and Matrices ... 22

4 Reading and Writing data .. 24

4.1. Reading Text Files .. 24

4.2. Reading built-in data ... 24

R: An Introduction TMMJ

 5 IT Services

4.3. Editing Data in Spreadsheet style ... 24

4.4. Writing out data ... 25

Exercise 3 Reading and Writing Files 25

5 Scripts, Objects and the Workspace 27

5.1. Objects and the Workspace .. 27

5.2. Directories .. 28

5.3. Running scripts .. 28

Exercise 4 Scripts, Objects and Workspaces 29

6 Control Statements and Loops .. 31

6.1. If/Else and Ifelse ... 31

6.2. Loops ... 31

Exercise 5 Loops and If/Else statements 33

7 Working with text in R ... 34

7.1. Characters and Strings ... 34

7.2. Useful commands .. 35

7.2.1. Count number of characters in the string .. 35

7.2.2. Split the string .. 35

7.2.3. Search text strings for a word .. 36

Exercise 6 Text Manipulations in R .. 36

8 Graphs and Charts ... 37

8.1. High level plotting commands ... 37

8.1.1. Generic plot() command ... 37

8.1.2. Boxplot ... 38

8.1.3. Histogram ... 38

8.1.4. Options ... 39

8.2. Low Level Plotting Functions .. 42

Exercise 7 Plotting functions in R ... 43

9 Statistics with R ... 45

9.1. Measures of Central Tendency and Spread 45

9.2. Tests for continuous vs discrete variables 45

9.2.1. 2 groups .. 45

9.2.2. 3 or more groups .. 45

9.3. Tests for discrete vs discrete variables .. 48

9.3.1. Chi Square Test .. 48

9.3.2. Fisher’s Exact Test ... 48

TMMJ R: An Introduction

IT services 6

9.4. Tests for continuous vs continuous variables 49

9.4.1. Pearson Correlation ... 49

9.4.2. Spearman Correlation .. 49

9.5. Regression ... 51

9.6. Probability Distributions ... 52

9.7. Other Statistical Features .. 52

9.8. Packages ... 53

Exercise 8 Statistics in R ... 53

10 Writing your own functions ... 54

11 References ... 55

R: An Introduction TMMJ

 7 IT Services

1 Introduction
Welcome to Introduction to R!

This booklet accompanies the course delivered by Oxford University IT services,
IT Learning Programme. Although the exercises are clearly explained so that you
can work through them independently, you will find that it will help if you also
attend the taught session where you can get advice from the teacher,
demonstrator(s) and even each other!

If at any time you are not clear about any aspect of the course, please make sure
you ask your teacher or demonstrator for some help. If you are away from the
class, you can get help by email from your teacher or from help@it.ox.ac.uk.

1.1. What you should already know

While basic knowledge of programming would be helpful, it is not essential.
Knowledge of statistics would be helpful in understanding the later chapters.

1.2. What will you learn?

This course will teach basic R programming for data analysis and presentation.
While it provides a framework of tools, please remember that data is highly
individualised from study to study, hence methods which seem applicable to one
study are not necessarily generalizable to another study. R has an active network
of users who are constantly developing packages for various disciplines. These
packages are open-source and can be freely downloaded from

http://cran.r-project.org/

http://cran.r-project.org/

TMMJ R: An Introduction

IT services 8

2 Getting Started

2.1. What is R?

R is a collection of software tools for data manipulation, analysis and
presentation. It is an implementation of the S language. There are several
advantages and disadvantages

2.1.1. Advantages

Extensive collection of statistical functions and operators for matrix calculations

Effective data handling and storage

Simple syntax

Good graphical facilities for data display

2.1.2. Disadvantages

Steeper learning curve compared to SPSS or SAS for users with no background in
programming

Slow performance compared to languages like C/C++

Larger room for error as R tends to make assumptions rather than produce error
messages when commands are unclear

2.2. Download and Installation

Detailed instructions can be found at http://cran.r-project.org/ for Windows,
Unix and Mac. For certain packages, previous versions for R may be needed due
to various dependencies. These previously versions can also be downloaded from
the website mentioned above.

2.3. R and other tools/languages

2.3.1. Matlab

For those with a background in engineering and a knowledge of Matlab, this document
facilitates the translation of Matlab syntax into R syntax as there are functions which are very
similar in both environments http://cran.r-project.org/doc/contrib/Hiebeler-matlabR.pdf

2.3.2. SPSS/SAS

For those who have mainly used SPSS/SAS for their statistical needs, R may seem confusing
at first due to the command line interface. However, this document
http://www.et.bs.ehu.es/~etptupaf/pub/R/RforSAS&SPSSusers.pdf provides more
information to smoothen the transition between the different environments

2.3.3. C++

C++ code is often used to speed up calculations in R. The 2 languages can be interfaced more
easily using this package. http://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-
introduction.pdf

http://cran.r-project.org/
http://cran.r-project.org/doc/contrib/Hiebeler-matlabR.pdf
http://www.et.bs.ehu.es/~etptupaf/pub/R/RforSAS&SPSSusers.pdf
http://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
http://cran.r-project.org/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf

R: An Introduction TMMJ

 9 IT Services

2.4. R on different platforms

Most functions in R are common to all platforms. On a unix platform, the graphical device
may need to be setup with a command such as

$ sys.putenv(“DISPLAY”=”:0.0”)

This may not work on all machines, and other settings may need to be adjusted.

When executing a script file from the command line in unix, the following can be used

$ R CMD BATCH my_script_file.R

Other details on differences between platforms can be found on http://www.r-
project.org/user-2006/Slides/IacusEtAl.pdf

2.5. Commands

In R, the command prompt is ‘>’. If you see ‘+’ instead of ‘>’, it means that the command is
incomplete. For example, if there are unpaired brackets or inverted commas, ‘+’ will be seen
instead of ‘>’. Commands can either run by typing them directly into the console or by typing
them into the R editor then highlighting, right-clicking and selecting the option ‘run
selection’.

The output of a command can either be immediately printed to the screen or it can be stored
in a variable.

For example, the output of a command ‘mean’ can either be immediately printed to the
screen (in which case it is not stored) or it can be stored in a variable (in this case the variable
named ‘answer’) and later accessed by typing the variable name at the command prompt.

> mean(5,6,7)

[1] 5

> mean(5,6,7)->answer

> answer

[1] 5

In R, the output of a command can be assigned to a variable with ‘->’ or ‘=’. Direction of
assignment does not matter, hence ‘a<-5’ is equivalent to ‘5->a’, both assign the value of 5 to
the variable ‘a’.

Of note, all alphanumeric symbols are allowed in variable names, in addition to ‘.’ And ‘_’.
However, variable names cannot start with a number eg. ‘a2’ is allowed but not ‘2a’

Commands can be separated by a new line or by a semi-colon(;). They can be commented out
with a hashmark(#).

R has a command history function, in which previously issued commands can be recalled
with the 2 vertical keys.

2.6. Getting Help

To get help on any specific function, use the command ‘help’ or ‘?’. For example, to search for
help on the command ‘sum’, at the command line, type

> help(sum) or

> ?sum

This will bring up the help page http://127.0.0.1:26807/library/base/html/sum.html

http://www.r-project.org/user-2006/Slides/IacusEtAl.pdf
http://www.r-project.org/user-2006/Slides/IacusEtAl.pdf
http://127.0.0.1:26807/library/base/html/sum.html

TMMJ R: An Introduction

IT services 10

This page contains several sections

sum {base} R Documentation

Sum of Vector Elements

Description

sum returns the sum of all the values present in its arguments.

Usage
sum(..., na.rm = FALSE)

Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values (including NaN) be removed?

Details

This is a generic function: methods can be defined for it directly or via

the Summary group generic. For this to work properly, the arguments ... should be

unnamed, and dispatch is on the first argument.

If na.rm is FALSE an NA or NaN value in any of the arguments will cause a value

of NA or NaN to be returned, otherwise NA and NaN values are ignored.

Logical true values are regarded as one, false values as zero. For historical

reasons, NULL is accepted and treated as if it were integer(0).

Value

The sum. If all of ... are of type integer or logical, then the sum is integer, and in

that case the result will be NA (with a warning) if integer overflow occurs.

Otherwise it is a length-one numeric or complex vector.

NB: the sum of an empty set is zero, by definition.

This refers to the package

from which the function

comes

This shows how the function is used, together with the default

settings. In this case, NAs are not removed by default. If

removal is wished, use ‘na.rm=TRUE’

This refers to input

arguments of the function

This refers to output of the function

This provides further details on the function, including

appropriate usage and meaning of default settings

This refers to the class of the function. This information is

not usually needed by the general user.

http://127.0.0.1:26807/library/base/help/S3groupGeneric

R: An Introduction TMMJ

 11 IT Services

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the

signature x, ..., na.rm.

‘plotmath’ for the use of sum in plot annotation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Wadsworth & Brooks/Cole.

See Also

colSums for row and column sums.

[Package base version 2.14.2 Index]

This section contains related functions and is

often useful to explore as there may be

combined functions that save you writing code

This section references, and is especially useful for recently

developed statistical tools

http://127.0.0.1:26807/library/base/help/S4groupGeneric
http://127.0.0.1:26807/library/base/help/plotmath
http://127.0.0.1:26807/library/base/help/colSums
http://127.0.0.1:26807/library/base/html/00Index.html

TMMJ R: An Introduction

IT services 12

Exercise 1 Getting Started

In this exercise, we will explore the graphical user interface in R and the help functions

 Task 1

Open the R console;
Learn how to use the
help facility

 Step 1

Open R. Click on the Star t button on the Task Bar then click on R.

This will bring up the R console.

 Step 2

At the console, type

> help.start()

This will bring up a html page from the official CRAN website

http://127.0.0.1:31317/doc/html/index.html

Navigate to the link ‘An Introduction to R’. This link contains an
immense amount of helpful information, inaddition to a Sample
Session in Appendix A which should be worked through when you
have the time.

 Step 3

We will be using the save() command later. In the R console, type

>?save()

to bring up the html page on save(). What are the differences between
the save.image() and save() commands?

http://127.0.0.1:31317/doc/html/index.html

R: An Introduction TMMJ

 13 IT Services

3 Basic Data Structures

3.1. Vectors

3.1.1. Creating numerical vectors

The simplest data structure in R is the numerical vector. This can be created with the c()
command or with the assign command. The statements below are equivalent.

> x <- c(5,4,3,2,1)

> assign("x", c(5,4,3,2,1))

Sequences or repeats of numbers can be generated in R. To generate a sequence of
consecutive numbers, either the colon operator or the function seq() can be used. If the
sequence has steps of greater than 1, the seq() command can be used with a third argument.

> a<-c(1:10) ## this produces a sequence of 1 to 10 in steps of 1

> a

 [1] 1 2 3 4 5 6 7 8 9 10

> a<-seq(1,10) ## this achieves the same effect as the command above

> a

 [1] 1 2 3 4 5 6 7 8 9 10

> b<-seq(1,10,2) ## this produces a sequence of 1 to 10 in steps of 2

> b

[1] 1 3 5 7 9

> d<-rep(1,10) ## this produces a vector of 10 ‘ones’

> d

 [1] 1 1 1 1 1 1 1 1 1 1

Vectors or parts of vectors can be concatenated together, with the c() command

> c(y,y,5)->y2

> y2

 [1] 5 4 3 2 1 5 4 3 2 1 5

An empty vector can also be created and populated with numbers. This is useful when writing
loops in which the result of repeated calculations are used to populate a vector.

> my_vector <- vector() ## creates empty vector

> my_vector[1] <- 42 ## inserts the value of 42 into the first slot of the

vector

> my_vector[2] <- 43 ## inserts the value of 43 into the second slot of the

vector

> length(my_vector) ## checks the length of the vector

[1] 2

TMMJ R: An Introduction

IT services 14

3.1.2. Accessing elements of numerical vectors

To access each element of the vector, square brackets are used. To access a few elements of
the vector, a colon can be used.

> y <- x[5] ## this assigns the value of 1 to y since the fifth element of

x is 1

> z <- x[1:3] ## this creates a new vector z with 3 numbers – 5,4,3

Index vectors can be created to select specific elements within a vector. There are different
types of index vectors.

a) Logical index vectors

A logical index vector is comprised of a series of ‘TRUE’ and ‘FALSE’ elements.

> a<-seq(1,10) ## produces sequence of numbers from 1 to 10

> a<7 -> b ## creates a logical vector based on the conditions provided

> b

 [1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

> a[b]

> [1] 1 2 3 4 5 6

> a[a<7] ## combines the above steps

 [1] 1 2 3 4 5 6

b) Vector of positive integers

In this case, the values in the index vector must be smaller than the length of the vector being
indexed. The elements that correspond to the elements of the index vector are concatenated
into a new vector

> primary.vector <- seq(1,10,2)

> index.vector <- c(1,3,5)

> primary.vector

[1] 1 3 5 7 9

> primary.vector[index.vector]

[1] 1 5 9

c) Vector of negative integers

This specifies the values to be excluded.

> index.vector <- c(-1,-3,-5)

> primary.vector[index.vector]

[1] 3 7

R: An Introduction TMMJ

 15 IT Services

3.1.3. Arithmetic operations on numerical vectors

Arithmetic operations can be performed on vectors. These are performed on each number
within the vector. In the example below, 1 is subtracted from each number within the vector
y2.

> y2-1

 [1] 4 3 2 1 0 4 3 2 1 0 4

Caution: When shorter vectors are used in the expression, they are recycled. In the example
below, the numbers in y are added individually to the numbers in y2, with the first number of
y added to the first number of y2, the second number of y added to the second number of y2
etc, until the fifth number of y is reached. After that, the first number of y is added to the
sixth number of y2. While other environments may generate a warning message when vectors
of different lengths are added together, R will not generate such warnings. As such, users are
more prone to errors since it is more likely that one has wrongly tried to added 2 vectors of
different lengths rather than wanting one vector to be fractionally recycled to be added to
another vector.

The use of the term ‘vector’ and later ‘matrix’ in this context does not pertain to linear
algebra. The vector operations performed with the commands detailed above are strictly for
element-wise operations. Linear algebra commands are different. For example, the symbol
for matrix multiplication is %*%. While linear algebra is beyond the scope of this course, an
excellent guide to Linear Algebra in R can be found in the link below.

http://bendixcarstensen.com/APC/linalg-notes-BxC.pdf

3.1.4. Useful vector commands

The length() command will find the length of the vector

> length(y2)

> [1] 11

The max() command will find the largest element of the vector

> max(y2)

> [1] 5

The min() command will find the smallest element of the vector

> min(y2)

> [1] 1

The sum() command will find the sum of all elements in the vector

> sum(y2)

> [1] 35

The mean() command will find the average of all elements in the vector

> mean(y2)

[1] 3

The sd() command will find the standard deviation of all elements in the vector

> sd(y2)

http://bendixcarstensen.com/APC/linalg-notes-BxC.pdf

TMMJ R: An Introduction

IT services 16

 [1] 1.490712

The sort() command returns vector sorted in numerical order

> sort(y2)

 [1] 1 1 2 2 3 3 4 4 5 5 5

3.2. Lists

A list is an ordered collection of objects known as components. Lists are like vectors except
for a few differences…

a) Different types of objects can be concatenated into lists eg. a list can consist of a
numeric vector, a matrix and a character string. The components of a vector all have
to be of the same type eg. all numbers, all characters etc.

b) The components of a list are accessed by double square brackets ([[]]) whereas the
components of a vector are accessed with single square brackets ([])

c) Linear algebra can be performed on vectors of numbers but not lists of numbers

d) Lists are recursive, meaning that one can create a list of lists of lists. This is not
possible with vectors.

e) Components of lists can be accessed by name through the $ operator. This is not
possible with a vector

> list() -> my_list ## creates an empty list

> 42 -> my_list[[1]] ## populates the list with numbers

> 43 -> my_list[[2]]

> names(my_list) <- c("first_entry","second_entry") ## assigns names to the

list components

> my_list$first_entry ## accesses components of the list using the name

[1] 42

Caution: When to use lists and when to use vectors?

When performing mathematical or statistical calculations, it is easier to use vectors because
one will be sure that all components of the vector will be of the numerical type and one can
perform linear algebra with them. Lists are useful when manipulating data that includes
different types of information eg. databases of names, addresses, ages etc.

3.3. Matrices

An array is a subscripted collection of data elements. A matrix is a 2 dimensional array. Since
matrices are the most commonly used form of array, we will describe matrices in detail.

3.3.1. Creating matrices

Arrays and matrices can be created with the array and matrix commands respectively. Note
that the if byrow=TRUE for the matrix() function, the data will be entered by row, if
byrow=FALSE, it will be entered by column, like the array() function.

R: An Introduction TMMJ

 17 IT Services

> my_matrix <- matrix(c(1,2,3, 7,8,9), nrow = 2, ncol=3, byrow=TRUE)

> my_matrix

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 7 8 9

> my_array <- array(c(1,7,2,8,3,9), c(2,3))

>my_array

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 7 8 9

An empty matrix can be created and populated with data

> my_matrix <- matrix(nrow=3,ncol=3)

> my_matrix[2,2] <- 42

> my_matrix

 [,1] [,2] [,3]

[1,] NA NA NA

[2,] NA 42 NA

[3,] NA NA NA

R inserts NA for any unpopulated elements in a matrix or vector

A matrix can also be created by binding vectors or matrices together using the cbind() or
rbind() functions which binds vectors in terms of columns and rows respectively.

> rbind(my_matrix,my_matrix) ->combined_matrix

> combined_matrix

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 7 8 9

[3,] 1 2 3

[4,] 7 8 9

Names can be assigned to the rows and columns of a matrix with the commands rownames()
and colnames().

> rbind(my_matrix,my_matrix) ->combined_matrix

> rownames(combined_matrix) <-

c("basket_1","basket_2","basket_3","basket_4")

> colnames(combined_matrix) <-

c("number_of_apples","number_of_oranges","number_of_pears")

TMMJ R: An Introduction

IT services 18

> combined_matrix

 number_of_apples number_of_oranges number_of_pears

basket_1 1 2 3

basket_2 7 8 9

basket_3 1 2 3

basket_4 7 8 9

3.3.2. Accessing elements of a matrix

The elements of a matrix can be accessed with 2 numbers separated in a square bracket
separated by a comma, with the first number being the row and the second number being the
column.

> combined_matrix[2,1]

[1] 7

Similar, several entries can be accessed at once with a colon, in the same way as a vector

> combined_matrix[2,1:3]

[1] 7 8 9

Elements can be accessed conditionally too.

For example, if one wanted to replace all numbers smaller than 3 with 0, this can be done

> combined_matrix[combined_matrix<3] <-0

> combined_matrix

 [,1] [,2] [,3]

[1,] 0 0 3

[2,] 7 8 9

[3,] 0 0 3

[4,] 7 8 9

R does this by creating an index matrix of TRUE and FALSE depending on the condition
imposed.

> combined_matrix<3

 [,1] [,2] [,3]

[1,] TRUE TRUE FALSE

[2,] FALSE FALSE FALSE

[3,] TRUE TRUE FALSE

[4,] FALSE FALSE FALSE

This can also be performed on selected rows or columns. The example below uses the original
object ‘combined_matrix’ and replaces numbers less than 3 with 0 only in the first row.

R: An Introduction TMMJ

 19 IT Services

> combined_matrix[1,which(combined_matrix[1,]<3)] <-0

> combined_matrix

 [,1] [,2] [,3]

[1,] 0 0 3

[2,] 7 8 9

[3,] 1 2 3

[4,] 7 8 9

In this way, matrix elements can be accessed or modified according to conditions in other
matrices. For example, if one had a matrix of gene expression values as well as a separate
matrix of ‘YES’ and ‘NO’ to indicate whether a particular measurement is valid or not, one
could insert a number representing an invalid measurement eg. ‘-999’ into the matrix of gene
expression values depending on whether the corresponding word was ‘YES’ or ‘NO’ in the
validity matrix.

An example is given below

> validity_matrix

 [,1] [,2] [,3]

[1,] "YES" "YES" "NO"

[2,] "NO" "YES" "YES"

> measurement_matrix

 [,1] [,2] [,3]

[1,] 4 4 3

[2,] 6 6 7

> measurement_matrix[validity_matrix=="NO"] <- -999 ## this inserts the value ‘-999’ into
the measurement matrix to represent entries that correspond to ‘NO’ in the validity matrix.
Note that the conditional operator for equals to is ‘==’, like in most other environments.

> measurement_matrix

 [,1] [,2] [,3]

[1,] 4 4 -999

[2,] -999 6 7

3.3.3. Useful matrix commands

The dim() command outputs the dimensions of the matrix, just as the ‘length’ command
outputs the length of the matrix.

> dim(measurement_matrix)

[1] 2 3

The order() command returns an index of the numerical order. This is especially useful as the
matrix can be sorted in ascending or descending or of a particular column (or row). For
example, if one took example of fruits in a basket in section 3.3.1, one could order the baskets
in terms of the number of oranges in them

TMMJ R: An Introduction

IT services 20

> combined_matrix

 number_of_apples number_of_oranges number_of_pears

basket_1 1 2 3

basket_2 7 8 9

basket_3 1 2 3

basket_4 7 8 9

> combined_matrix[order(combined_matrix[,2]),]->

combined_matrix_orange_ordered

> combined_matrix_orange_ordered

 number_of_apples number_of_oranges number_of_pears

basket_1 1 2 3

basket_3 1 2 3

basket_2 7 8 9

basket_4 7 8 9

The functions rowMeans, colMeans, colSums and rowSums are usefully in finding the
average of rows/columns and the sums of rows/columns respectively

> colMeans(combined_matrix_orange_ordered)

 number_of_apples number_of_oranges number_of_pears

 4 5 6

> rowMeans(combined_matrix_orange_ordered)

basket_1 basket_3 basket_2 basket_4

 2 2 8 8

> colSums(combined_matrix_orange_ordered)

 number_of_apples number_of_oranges number_of_pears

 16 20 24

> rowSums(combined_matrix_orange_ordered)

basket_1 basket_3 basket_2 basket_4

 6 6 24 24

The function t() is useful in transposing the matrix so that the rows become columns and the
columns become rows.

> t(combined_matrix_orange_ordered) ->

combined_matrix_orange_ordered_transposed

> combined_matrix_orange_ordered_transposed

 basket_1 basket_3 basket_2 basket_4

number_of_apples 1 1 7 7

number_of_oranges 2 2 8 8

number_of_pears 3 3 9 9

R: An Introduction TMMJ

 21 IT Services

Caution: All components of a matrix have to be of the same type. If a character is inserted
into a matrix of numbers, all components of the matrix will be coerced into a character type.

The type of object can be checked with the following commands – is.numeric, is.character,
is.matrix, is.list, is.vector.

> is.numeric(combined_matrix_orange_ordered[1,3]) ## this checks the type

of element in the matrix at index [1,3]

[1] TRUE

> combined_matrix_orange_ordered[1,1] <- "unknown" ## this inserts the

character string into the matrix at index[1,1], hence coercing all other

elements of the index into character type

> combined_matrix_orange_ordered

 number_of_apples number_of_oranges number_of_pears

basket_1 "unknown" "2" "3"

basket_3 "1" "2" "3"

basket_2 "7" "8" "9"

basket_4 "7" "8" "9"

> is.numeric(combined_matrix_orange_ordered[1,3]) ## this demonstrates that

the elements in the matrix are now no longer numeric type, but are

character type

[1] FALSE

> is.character(combined_matrix_orange_ordered[1,3])

[1] TRUE

The command typeof() can be used to find the type an object is. However, it may not give full
information eg. in the case of a character matrix, it will just report ‘character’.

3.4. Data frames

A data frame is like a matrix that may contain elements of different types.

Data frames can be constructed with the function data.frame(). Alternatively, a list can be
coerced into a data frame using the function as.data.frame()

Data can be read into R to form a data frame using the read.table() function (discussed later).

When dealing with data frames (unlike matrices), the attach() and detach() functions allow
for a database to be loaded into R as a copy and modified temporarily without changing the
original database.

3.5. Factors

A factor is a vector object used to specify grouping of the components of other vectors. An
example is given below

> c("chocolate","vanilla","chocolate","strawberry","vanilla","vanilla","cho

colate") -> flavours

> factor(flavours) -> fflavours

> fflavours

TMMJ R: An Introduction

IT services 22

[1] chocolate vanilla chocolate strawberry vanilla vanilla

chocolate

Levels: chocolate strawberry vanilla

Factors can also be constructed from a vector of numbers eg.

> y<-c(3,3,5,6,6) ## creates a vector of numbers

> y

[1] 3 3 5 6 6

> as.factor(y) -> y.f ## converts these numbers to factors

> y.f

[1] 3 3 5 6 6

Levels: 3 5 6

Caution: as.numeric will convert factors in a different way compared to characters. This is
something that one has to beware of because data is sometimes read in terms of factors and
other times in terms of characters (depending on the settings). Applying ‘as.numeric’ to a
string of factors believed to be characters will provide an unexpected result. The example
shown below is based on the vector ‘y.f’ created above.

> as.numeric(y.f) ## converts these factors back to numbers (a different set of numbers will
result)

[1] 1 1 2 3 3

> as.numeric(as.character(y.f)) ## converts these factors back to numbers (original set of
numbers will result)

[1] 3 3 5 6 6

Exercise 2 Vectors and Matrices

In this exercise, we will explore vector and matrix manipulations in R

 Task 1

Explore the properties of
a vector

 Step 1

The ‘WWWusage’ dataset provides a time series of the number of users
connected to the internet through a server each minute. Find out how
many entries there are in this vector with the command

 Step 2

Find the average of all the entries with the command

 Step 3

Extract the 40th to 60th entry in the vector and find that median of
those 21 entries with the command

R: An Introduction TMMJ

 23 IT Services

 Task 2

Explore the properties of
a matrix

 Step 1

The WorldPhones dataset describes the number of telephones in each
region of the world (in the thousands). Find the dimensions of the
dataset with the command

 Step 2

Find the difference between the number of phones in the two regions
with the highest and lowest number of phones respectively in 1957

 Step 3

In which year did Africa have 1411 thousand phones?

 Step 4

Which area had 45939 thousand phones in 1951?

 Step 5

Find the total number of phones in all areas in 1959

TMMJ R: An Introduction

IT services 24

4 Reading and Writing data

4.1. Reading Text Files

Text files can be read into R with the read.table() command. There are several options that
can be supplied with this command

a) skip – this refers to the number of lines in the file that should be skipped before the
actual data is input (default is zero)

b) header – this refers to whether the first line should be read in as column names (R
will count the number of entries in the first and second row, setting this to true if
there are 1 fewer entries in the first row than the subsequent rows)

c) fill – this refers to whether rows which have fewer entries than others are filled with
blank fields (if this is not explicitly stated and there are rows with fewer fields than
others, R will produce a warning message)

d) na.strings – this refers to the character string that symbolises ‘not applicable’. The
default setting is “NA”.

e) sep – this is the field separator. The default setting is whitespace ie. “ “

The file is read into R and a dataframe is created. This can be converted to a matrix with the
as.matrix() command. This is useful when mathematical operations are performed on the
data.

When reading tab delimited text files rather than white-space delimited text files, the
command read.delim() can be used. In read.delim(), the default setting for sep is “\t”. When
reading a file with comma-separated values, the command read.csv() can be used.

Caution: It is always a good idea to check whether your file has been read in correctly using
command such as these

head(x,n=yL) – prints first y lines of x

head(x,n=yL) – prints last y lines of x

summary(x) – this provides further information about the objects depending on its class. In
the case of a numerical matrix, it supplies information on the measures of central tendency
and spread

4.2. Reading built-in data

There are several datasets automatically supplied with R, for testing purposes. These datasets
can be accessed with the command ‘data().’ The specific dataset can be loaded into R as
follows…

> data(AirPassengers)

This creates an object called AirPassengers containing the built-in data.

Some R packages also contain built in data. This can be viewed using the
data(package=”package_name”) command. The data can then be loaded in using the
data(dataset_name, package=”package_name”) command.

4.3. Editing Data in Spreadsheet style

Data can be edited in a spreadsheet-like environment with the command

>edit(data_old) -> data_new

R: An Introduction TMMJ

 25 IT Services

In this way, the final object is assigned to data_new. If the objective is to alter the original
dataset, the command fix(data_old), which is equivalent to

>edit(data_old) -> data_old

4.4. Writing out data

Data can be written out into a text file using the write.table() command. Like the read.table()
command, there are several options that can be used.

Append – if true, the output is appended to the file of the same name. If false, the existing file
is destroyed and replaced by the new file (default is false)

Quote – This determines whether characters are surrounded by double quotes (default is
true)

Sep – This determines what the field separator string is (default is whitespace “”)

Eol – This determines the character to be printed at the end of each line (default is “\n”)

Row.names – this determines whether the row names of x are to be written out

Col.names = this determine s whether the column names are to be written out

Write.csv() can be used to create a comma-separated-value file that is readable by Microsoft
Excel.

Exercise 3 Reading and Writing Files

In this exercise, we will explore reading and writing data into R

 Task 1

Reading data

 Step 1

The text file ‘expenditure.txt’ contains the personal expenditure of US
citizens in the 1940s to 1960s.

Open the file in Microsoft notepad to check the format, in particular
whether it has a header row.

 Step 2

In R, read the file into an object called ‘x’ with the command

 Step 3

In R, find the standard deviation of Health and Medical Expenditure
through all the years represented in the data with the command

 Step 4

Open the csv file ‘expenditure.csv’ in Microsoft Excel. Read it into R
with the read.csv() command. Check that the resulting object is similar
to the object read in from the text file.

 Task 2

Writing data

 Step 1

The Puromycin data frame has 23 rows and 3 columns of the reaction
velocity versus substrate concentration in an enzymatic reaction
involving untreated cells or cells treated with Puromycin. There are 3
columns – substrate concentration, rate and state (treated vs
untreated). Explore the structure of this dataset with the head() and
summary() commands

TMMJ R: An Introduction

IT services 26

 Step 2

Create a matrix with the rows of the puromycin dataframe that have
‘treated’ in the third column with the following command.

 Step 3

Write out this matrix into a text file with the following command

Open this text file in Microsoft Notepad and check that it contains
what you expected.

 Step 4

Create a matrix with the rows of the puromycin dataframe that have a
rate of greater than 100 counts/min/min with the following command

 Step 5

Write out this matrix into a csv file with the following command

Open this csv file in Microsoft Excel and check that it contains what
you expected.

R: An Introduction TMMJ

 27 IT Services

5 Scripts, Objects and the Workspace

5.1. Objects and the Workspace

The basic unit that is manipulated in R is an object. An object can be a variable, a function, or
general structure built from different components. In an R session, objects are created and
stored. They can be accessed with the ls() command.

To remove an object, the command rm() can be used. To clear the workspace of all objects,
the command rm(list=ls()) can be used.

The objects used in a session (and the command history) can be stored in a file with the
command save.image(). The objects can be reloaded to the workspace with the command
load(). If one wishes to save specific objects, this can be performed with the save() command
and a list of objects as the argument.

An example is given below.

> a<-1

> b<-2

> c<-3

> d<-4

> ls()

[1] "a" "b" "c" "d" ## this lists the objects in the current workspace

> save.image("my_workspace.RData") ## this saves all the objects in the

current workspace

> rm(list=ls()) ## this clears the workspace of all objects

> ls() ## this lists the objects in the workspace (none at present)

character(0)

> load("my_workspace.RData") ## this loads up the stored workspace file

> ls() ## the objects stored within the workspace file are loaded into the

current workspace

[1] "a" "b" "c" "d"

> rm(d) ## this removes the object ‘d’

> ls()

[1] "a" "b" "c"

> save("a","b",file="my_objects.Rd") ## this selectively stores 2 objects –

a and b

> rm(list=ls())

> load("my_objects.Rd") ## this loads up the 2 objects stored in the Rd

file

> ls()

[1] "a" "b"

The R workspace has memory limits (dependent on the machine it is run on), which means
that extremely large datasets may have to be analysed in chunks. The command
memory.size() provides the total amount of memory used by R while the command
memory.limit() provides the memory limit for the workspace. The memory limit can be
altered by providing the command memory.limit () with an argument eg.

> memory.size() ## this reports the memory currently used

[1] 14.81

> memory.limit() ## this reports the memory limit of the workspace

TMMJ R: An Introduction

IT services 28

[1] 3583

> memory.limit(3600) ## this changes the limit to the value of the argument

supplied

[1] 3600

> memory.limit() ## this reports the new memory limit

[1] 3600

To end the session, the command q() is used. At this point, you will be prompted with a
question ‘Save Workspace Image?’ If you click on yes, all objects in the workspace are written
to a file called ‘.RData’ and the command lines are written to a file called ‘.Rhistory’. When R
is started from the same directory, both files are automatically loaded.

Caution: It is a good idea to store your workspaces separately according to project rather than
‘.Rhistory’ or ‘.Rdata’ since variables with common names eg. ‘x’ or ‘foo’ may take on different
values for different projects, leading to mistaken identities. When saving a script file, the ‘.R’
extension has to be added explicitly as R will not add it for you, unlike the addition of ‘.doc’
by Microsoft word or ‘.xls’ by Microsoft Excel.

5.2. Directories

When loading workspace files or script files, R has to be started within the directory that the
files are stored. To check which directory R is in, one can use the command getwd(). To
change directory within R, one can use the command setwd().

If one does not wish to change directory, an alternative is to use the full path to the file when
loading it into R.

An example is given below.

> getwd() ## this prints the current directory that R is in

[1] "C:/Me/u0302066/Documents"

> setwd("C:/You/u0302066/Documents") ## this changes the directory

> getwd()

[1] "C:/You/u0302066/Documents"

> load(“C:/Me/u0302066/Documents/my_workspace.RData”) ## this loads a

workspace located in a different directory by stating the full path to the

workspace

> ls()

[1] "a" "b" "c" "d"

5.3. Running scripts

So far, we have been running commands by typing them into the R editor and clicking on ‘run
selection’ or by typing them directly in the console. Commands typed into the R editor can
also be stored in a file, with the extension ‘.R’ and run at the console with the command
‘source’. For example

> source(“my_commands.R”)

R: An Introduction TMMJ

 29 IT Services

will run all commands in the file ‘my_commands.R’

The function ‘sink’ can be used to divert all output from the console into a file. For example,

> sink(“my_record.lis”)

will divert all subsequent output to an external file ‘my_record.lis’ and the command sink()
will restore it to the console again.

Exercise 4 Scripts, Objects and Workspaces

In this exercise, we will explore scripts, objects and workspaces in R

 Task 1

Writing and executing
scripts

 Step 1

Click on File|New script. This opens up a box titled ‘Untitled – R
editor’.

 Step 2

Type into the box

rm(list=ls())

a<-1

b<-2

ls()

 Step 3

Execute the command by highlighting it then right click | run line or
selection. What output do you get? ___________________

 Step 4

In the R editor, type in a command that creates a new variable
‘sum_of_a_and_b’ by adding a and b together

 Step 5

Remove all objects in the workspace with the command

 Step 6

Save the script file as ‘my_script_file.R’ by doing File|Save as. Make
sure that your cursor is in the R editor and not in the R console when
you do this.

 Step 7

Execute the script file by typing source(“my_script_file.R”) in the R
console

 Task 2

Saving and loading objects

Step 1

Create a 2 new variables – ‘difference_of_a_and_b’,
’product_of_a_and_b’.

Step 2

Save these 2 objects in a file called ‘my_objects.Rd’ with the following
command ________________

Step 3

Quit R without saving the workspace.

TMMJ R: An Introduction

IT services 30

Step 4

Open a new session of R and load these 2 objects into the workspace
with the following command ___________________

R: An Introduction TMMJ

 31 IT Services

6 Control Statements and Loops

6.1. If/Else and Ifelse

The if/else syntax is as follows

> if (condition) expr_1 else expr_2

An example is given below.

> y<-1

> if(y>2) x<-3 else x <-4

> x

[1] 4

The conditional expression often contains the ‘and’ or ‘or’ operators, which are represented
by ‘&&’ and ‘||’ (or ‘&’ and ‘|’ described later). Here is an example of how to use them.

> z<-1

> y<-1

> if(y<2&&z<2) x<-3 else x <-4

> x

[1] 3

The above statement can also be written in the ifelse syntax as follows

> ifelse(y<2&&z<2,3,4)->x

> x

[1] 3

Caution: The ‘and’ and ‘or’ operators can take 2 forms. ‘And’ can be represented by ‘&’ or
‘&&’. ‘Or’ can be represented by ‘|’ or ‘||’. The ‘short circuit’ form of the operators are ‘&&’ and
‘||’ respectively. These only evaluate the second argument if necessary, unlike ‘&’ and ‘|’,
which evaluate both arguments. Additionally, if the arguments are vectors, ‘&’ and ‘|’ returns
a vector of ‘TRUE’ and ‘FALSE’ while ‘&&’ and ‘||’ return a single output based on the first
element of the vector (in addition to a warning). With that in mind, how should we decide
which to use? For most conditional testing, the arguments are single elements rather than
vectors, hence && can be used safely. The warning would come in useful in case you have
unintentionally included a vector as an argument.

6.2. Loops

This can be achieved with ‘for’ or ‘while’.

TMMJ R: An Introduction

IT services 32

The syntax is as follows…

> for (i in n:m){expr} where n is the first value and m is the last value of i for which the
expression within curly brackets should be evaluated

An example is given below

> my_results <- vector() ## this creates an empty vector to store results

> my_matrix <- matrix(c(1,2,3, 7,8,9), nrow = 2, ncol=3, byrow=TRUE)

> my_matrix ## this generates a matrix for testing purposes

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 7 8 9

> for(i in 1:3){ ##this loops through the numbers 1 to 3

+ mean(my_matrix[,i])->my_results[i] ## this finds the mean of each column

in the matrix

+ print(i)} ## this prints the counter so that we know which column we are

up to

[1] 1

[1] 2

[1] 3

> my_results

[1] 4 5 6

Printing the counter is useful especially when running very long loops, so that we are able to
monitor and make sure that the loop is still running and has not hanged itself.

The while syntax for the above statement is as follows

> i<-1

> while(i<4){

+ mean(my_matrix[,i])->my_results[i]

+ print(i)

+ i<-i+1}

[1] 1

[1] 2

[1] 3

> my_results

[1] 4 5 6

As you might have realised by now, both loops basically perform the same function as the
colMeans() command. In R, there are many built-in functions that perform complicated
operations. It is always good to do a search using the help function and look at related
commands on the help page to see if you can avoid writing your own functions or loops.

R: An Introduction TMMJ

 33 IT Services

An alternative to writing loops is to use the ‘apply’ command as it runs faster than loops.

The syntax for the apply() command is

apply(X,margin,fun) where the function ‘fun’ is applied to the matrix ‘X’ either row-wise (in
which case margin=1) or column-wise (in which case margin=2)

The syntax for the above loops would be

apply(my_matrix,2,mean) -> my_result

Exercise 5 Loops and If/Else statements

In this exercise, we will explore loops and if/else statements in R

 Task 1

Loops

 Step 1

The dataset ‘airquality’ contains daily airquality measurements in New
York in 1973. It is a dataframe with observation of 6 variables – mean
ozone in parts perbillion, solar radiation, wind in miles perhour,
temperature in degrees fahrenhait, month and day of month. View the
first few lines of the dataset with the command head().

 Step 2

For each day, we would like to create a hypothetical ‘wind-
temperature’ score calculated by

Wind *2 + temperature of that day – temperature of the next day

Write a loop to create this score for each day and store it in a vector. It
is not necessary to calculate this value for the last day in the dataset.
You should end up with a vector the length of the number of rows in
the data frame minus one.

Hint – Let the loop variable i be the row-number

 Task 2

If else statements

 Step 1

For each day, we would like to create a conditional score based on
temperature and solar radiation. If the solar radiation is higher than
150 units and the temperature is higher than 60 degrees fahrenhait,
the score should be 1. If not, it should be 0. Write an ifelse statement to
calculate this score for the all days in the dataset. You should end up
with a vector of zeros and ones. The vector should be the same length
as the number of rows in the dataset.

TMMJ R: An Introduction

IT services 34

7 Working with text in R

7.1. Characters and Strings

So far the functions that we have described mainly discuss numerical types. In this chapter,
we will discuss several common and useful functions for working with text in R. This will be
useful for working with charts and graphs as described in the next chapter.

A character is the single unit of text. Characters can be joined together to form text strings eg.
“This is a text string”

Text string can be joined together to form vectors of text strings. Of course, characters can
also be joined together to form vectors of characters. However, joining characters to form a
vector is not equivalent to joining characters together to form a text string. To do the latter,
one needs the ‘paste’ command (described later).

> "I am a text string" -> text_string_1

> "I am another text string" -> text_string_2 ## creates 2 text strings

> c(text_string_1,text_string_2)->text_string_vector ## joins 2 text

strings into a vector

> text_string_vector ## prints out the vector

[1] "I am a text string" "I am another text string"

> text_string_vector[2] ## accesses the second element of the vector

[1] "I am another text string"

> c(text_string_vector,"I am yet another text string") ->

text_string_vector ## adds a third text string element to the text_string

vector

> text_string_vector

[1] "I am a text string" "I am another text string"

[3] "I am yet another text string"

As can be seen above, adding another text string to the vector of text string does not join text
strings together. To do that, we need the paste command. An example is given below.

> paste(text_string_1,text_string_2,sep=" ") -> text_string_3

> text_string_3

[1] "I am a text string I am another text string"

The separator can be changed with the ‘sep’ option.

> paste(text_string_1,text_string_2,sep=" and ") -> text_string_3

> text_string_3

[1] "I am a text string and I am another text string"

Like text strings, characters can either be pasted together or joined together to form a vector

> paste("t","e","x","t","s","t","r","i","n","g",sep="") -> my_text_string

> c("t","e","x","t","s","t","r","i","n","g") -> my_text_vector

> my_text_string

[1] "textstring"

> my_text_vector

 [1] "t" "e" "x" "t" "s" "t" "r" "i" "n" "g"

R: An Introduction TMMJ

 35 IT Services

When files are read into R, numbers are sometimes read in as characters. These can be
converted into numbers with the as.numeric() command. If there are any characters in the
vector, they will be converted to “NA”.

7.2. Useful commands

7.2.1. Count number of characters in the string

nchar() reports how many characters there are in the string

> my_text_string

[1] "textstring"

> nchar(my_text_string)

[1] 10

7.2.2. Split the string

The substr() command splits the text string with the following syntax substr(text,start,stop)

> substr(my_text_string,1,4)

[1] "text"

The strsplit() command splits the text string at a delimiter with the following syntax
strsplit(text,delimiter).

> strsplit("why is are there so many ones at the end of this line","

")[[1]][1]

[1] "why"

This begs the question – why is there are need for the [[1]]?

This is because strsplit() operates on vectors and splits each element of the vector along the
delimiter, then creates a list with each element of the vector being each element of the list.
Hence, if there were a vector of text strings, it would be split into a list of text strings as
follows

> text_vector<-(c("I bet R","is having a laugh"))

> strsplit(text_vector," ")

[[1]]

[1] "I" "bet" "R"

[[2]]

[1] "is" "having" "a" "laugh"

To access the word “laugh”, we would do

> strsplit(text_vector," ")[[2]][4]

[1] "laugh"

TMMJ R: An Introduction

IT services 36

7.2.3. Search text strings for a word

Vectors of text strings can be searched for a word. The syntax is as follows
grep(“search_term”,text).

> grep("laugh",text_vector)

[1] 2

This reports that the word laugh is in the second text string of the vector of text strings

Exercise 6 Text Manipulations in R

In this exercise, we will practise manipulating text in R

 Task 1

Working with text
vectors and text strings

 Step 1

The file ‘text_sample.Rd’ contains 2 objects, ‘txt1’ and ‘txt2’. Load the
file into R with the command load().

 Step 2

Create a new vector by concatenating elements of each vector together.
The new vector should read “my” “dog” “loves” “my” “cat”

 Step 3

Paste the elements of this new vector together to create a text string
that reads “my dog loves my cat”

 Task 2

Splitting text

 Step 1

Split the new string “my dog loves my cat” with the whitespace
delimiter “ “

 Step 2

Extract the second word “dog” from the output of step 1

 Step 3

Extract the word ‘do’ from the word ‘dog’ with the substr() command

R: An Introduction TMMJ

 37 IT Services

8 Graphs and Charts
There are 2 different types of plotting commands – high level and low level.
High level commands create a new plot on the graphics device, low level commands add
information to an existing plot.

8.1. High level plotting commands

These always start a new plot, erasing anything already on the graphics device. Axes, labels
and titles are created with the automatic default settings.

8.1.1. Generic plot() command

The plot() function is the most commonly used graphical function in R. The type of plot that
results depends on the arguments supplied.

If plot(x,y) is typed in, a scatterplot of y against x is produced if both are vectors.

If plot (x) is typed in and x is a vector, the values of x will be plotted against their index. If x is
a matrix with 2 columns, the first column will be plotted against the second column.

Other formats include plot(x~y), plot(f,y) where f is a factor object and plot(~expr) etc. These
can detailed in the help pages on plot.

The women dataset gives the average heights and weights for American women aged 30–39.
It consists of a matrix with the first column being height and the second column being
weight.

To produce a scatterplot representing the relationship between height and weight, we can use
the following command

> plot(women)

TMMJ R: An Introduction

IT services 38

8.1.2. Boxplot

These can be performed with the boxplot() command

The OrchardSprays dataset in R contains information on a study on the effect of different
concentrations of lime sulphur in repelling honey bee. There are 64 observations on 4
variables – treatment groups (these different groups are represented by alphabets, with A
being the highest concentration of lime sulphur, G being the lowest concentration of lime
sulphur, H being no lime sulphur at all), response (as measured by decrease in concentration
of sugar solution that the lime sulphur is dissolved in), row position and column position
(latin square design)

Boxplots express the relationship between 2 variables, one continuous and one discrete. They
represent a five point summary - the smallest observation (sample minimum), lower quartile
(Q1), median (Q2), upper quartile (Q3), and largest observation (sample maximum).

In this example, we can represent the relationship between response and treatment group by

> boxplot(decrease~treatment,data=OrchardSprays)

The resultant boxplot shows a clear relationship between response to treatment and
concentration of lime sulphur in the sugar solution, which differs between the groups.

8.1.3. Histogram

A histogram groups continuous variables into categories and plots them in terms of
frequency. The bins of a histogram can be adjusted according to the distribution of data with
the ‘breaks’ option. In this example, we can plot a histogram of the treatment response

R: An Introduction TMMJ

 39 IT Services

> hist(OrchardSprays$decrease)

There are many other plotting functions eg.

qqplot() – does a quantile-quantile plot

persp(x,y,z) – draws a 3D contour surface representing the relationship between 3 variables

These different plot functions are detailed in the document http://cran.r-
project.org/doc/manuals/R-intro.pdf

8.1.4. Options

Various additional details can be added to the plot

To add a title, use the ‘main’ option

To change the axis labels, use the ‘xlab’ and ‘ylab’ options

To change the axis margins, use the ‘xlim’ and ‘ylim’ options

For example, the plot above can be modified with the following command

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf

TMMJ R: An Introduction

IT services 40

> hist(OrchardSprays$decrease, main="Histogram of Treatment Response",

xlab="Treatment response")

The option ‘type’ can be used to modify the type of graph produced. Type=”p” is the default
and results in individual points. Type=”l” plots lines and type=”b” plots points connected by
lines. For example, in the case of women’s height and weight, the resultant plots are as
follows

> plot(women,type="l")

R: An Introduction TMMJ

 41 IT Services

> plot(women,type="b")

The option ‘col’ can be used to change the colour of the graph.

For example, this command colours all the points blue.

> plot(women,type="b",col=”blue”)

TMMJ R: An Introduction

IT services 42

The points can also be selectively coloured by making the colour argument a vector as follows

> plot(women,type="b",col=c(rep("black",7),rep("blue",8)))

8.2. Low Level Plotting Functions

To add additional features to plots, these commands can be used. They do not erase the
current plot.

Points(x,y) adds points to the plot. lines(x,y) adds lines to the plot

For example, the command below adds the point with the corresponding coordinates to the
plot

R: An Introduction TMMJ

 43 IT Services

> points(64,140)

Some other options for modifying the graph include

Text() – adds text to the graph

Legend() – adds a legend to the graph

Abline() – adds a line in the format y=ax+b

Polygon() – adds a polygon

A full list can be found in the ‘Introduction to R’ manual on the R website.

Exercise 7 Plotting functions in R

In this exercise, we will explore plotting functions in R

 Task 1

Drawing line graphs

 Step 1

The dataset ‘longley’ contains economic variables that observed yearly
from 1947 to 1962. Plot the GNP on the y axis and the year on the x
axis. Use type=”b” to create a plot with both the points and a line
joining them. Label the axes accordingly. Give your plot an appropriate
title.

 Step 2

Using the command points(), add the figures for ‘Unemployed’ to the
plot. Use type=”b” to create a plot with both points and lines joining
them. Colour the points blue with the option ‘col’.

 Step 3

What problem do you notice? Modify the graph limits with the ‘ylim’
optionand replot both lines.

 Task 2

Drawing histograms

 Step 1

Draw a histogram of the variable ‘Employed’. Give it an appropriate
title and axes labels. Does it follow a Gaussian distribution?

TMMJ R: An Introduction

IT services 44

R: An Introduction TMMJ

 45 IT Services

9 Statistics with R

9.1. Measures of Central Tendency and Spread

These can be obtained with the following commands, which calculate the required measure
from the vector argument supplied

> test_vector <- seq(10)

> test_vector

 [1] 1 2 3 4 5 6 7 8 9 10

> mean(test_vector)

[1] 5.5

> median(test_vector)

[1] 5.5

> sd(test_vector)

[1] 3.02765

> max(test_vector)

[1] 10

> min(test_vector)

[1] 1

> summary(test_vector)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 1.00 3.25 5.50 5.50 7.75 10.00

9.2. Tests for continuous vs discrete variables

9.2.1. 2 groups

With normally distributed measurements in 2 groups, one can measure the relationship
between continuous and discrete variables with a parametric paired or unpaired t test with
the command t.test().

This test has a few options. The default setting is an unpaired test but this can be changed
with the option (paired=FALSE). The default setting is a 2 tailed test but this can be altered
with the option (alternative=LESS or alternative=GREATER).

When the data is not normally distributed, one would use the non-parametric Wilcoxon test
with the commandwilcox.test, with the options paired=TRUE(Wilcoxon signed rank test), or
paired=FALSE(Wilcoxon rank sum test, otherwise known as Mann Whitney U test).

9.2.2. 3 or more groups

When the data is distributed normally, one can use the parametric Analysis of Variance test
with the command aov(). When the data is not normally distributed, one can use the non-
parametric Kruskal-Wallis test with the command kruskal.test().

The following example is from the dataset called ‘chickwts’. This describes an experiment to
compare the effectiveness of different types of feed supplements on the growth rate of
chickens. This dataset consists of 71 observations on 2 variables. The first variable is chick
weight after 6 weeks and the second variable is the grouping based on the type of feed. There
are 6 types of feeds, which can be accessed with the following command.

TMMJ R: An Introduction

IT services 46

> summary(chickwts)

 weight feed

 Min. :108.0 casein :12

 1st Qu.:204.5 horsebean:10

 Median :258.0 linseed :12

 Mean :261.3 meatmeal :11

 3rd Qu.:323.5 soybean :14

 Max. :423.0 sunflower:12

Let’s say we wish to find out how feed affects chick weight, one quick way to do this is to
visualise the data with a boxplot.

> boxplot(weight~feed,data=chickwts,las=2) ## las=2 turns the x labs

horizontally

Let’s say we wish to find out whether chicks fed with casein have a significantly higher weight
than chicks fed with horsebean.

The first step is to check whether the data is normally distributed. This can be done by
plotting a histogram of the weights.

R: An Introduction TMMJ

 47 IT Services

> hist(chickwts$weight)

Since the data is normally distributed, we can use the unpaired t test as follows

>t.test(chickwts$weight[which(chickwts$feed=="casein")],chickwts$weight[whi

ch(chickwts$feed=="horsebean")])

 Welch Two Sample t-test

data: chickwts$weight[which(chickwts$feed == "casein")] and

chickwts$weight[which(chickwts$feed == "horsebean")]

t = 7.3423, df = 18.36, p-value = 7.21e-07

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 116.6982 210.0685

sample estimates:

mean of x mean of y

 323.5833 160.2000

The output provides more information about the results of the t test. The t statistic is shown,
together with the degrees of freedom, 95% confidence interval and p value. The means of
each of group are shown. When var.equal = FALSE (by default), the welch 2 sample test is

TMMJ R: An Introduction

IT services 48

used, which is an adaptation of the Student’s t test adapted for unequal variances. If
var.equal=TRUE, the variances are pooled.

If we wish to conduct an analysis of variance amongst all the feed groups, we can use the
following

> summary(aov(chickwts$weight~chickwts$feed))

 Df Sum Sq Mean Sq F value Pr(>F)

chickwts$feed 5 231129 46226 15.37 5.94e-10 ***

Residuals 65 195556 3009

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This tells us that there are significant differences between at least 2 groups. However, we do
not know which pairs of groups have differences and which do not. To do this, we can
perform posthoc tests.

>pairwise.t.test(chickwts$weight,chickwts$feed,p.adjust.method="none",pool.

sd=FALSE,var.equal=FALSE)

 Pairwise comparisons using t tests with non-pooled SD

data: chickwts$weight and chickwts$feed

 casein horsebean linseed meatmeal soybean

horsebean 7.2e-07 - - - -

linseed 0.00026 0.00687 - - -

meatmeal 0.09866 0.00011 0.02933 - -

soybean 0.00352 0.00016 0.19799 0.22523 -

sunflower 0.82151 1.7e-08 2.4e-05 0.04441 0.00043

9.3. Tests for discrete vs discrete variables

9.3.1. Chi Square Test

This is used when comparing 2 discrete variables to measure whether the observed
proportions are significantly different from the null hypothesis. There should be more than 5
observations for each cell. The R command is chisq.test().

9.3.2. Fisher’s Exact Test

This is used when there are fewer than 5 observations for each cell. The command is
fisher.test()

R: An Introduction TMMJ

 49 IT Services

In this example, we create a 2x2 matrix of the number of male and female students in a 2
classes – physics and biology. We would like to find out whether there is a statistical
difference in the proportion of males compared to females in each subject class. Since there
are more than 5 subjects in each category, we should use the chi square test.

> gender_subject <- matrix(c(23,45, 25,57), nrow = 2, ncol=2, byrow=TRUE)

> rownames(gender_subject) <- c("males","females")

> colnames(gender_subject) <- c("physics","biology")

> gender_subject

 physics biology

males 23 45

females 25 57

> chisq.test(gender_subject)

 Pearson's Chi-squared test with Yates' continuity correction

data: gender_subject

X-squared = 0.0677, df = 1, p-value = 0.7947

9.4. Tests for continuous vs continuous variables

9.4.1. Pearson Correlation

This is used when both variables are normally distributed. The R command is
cor.test(x,y,method=”pearson”)

9.4.2. Spearman Correlation

This is used when one or both variables are not normally distributed. The R command is
cor.test(x,y,method=”spearman”)

The example below comes from the ‘women’ dataset, which documents the heights and
weights of a sample of American women.

The first step is to check whether both height and weight variables are normally distributed.
This can be performed as follows either with a histogram (previous example) or with the
Shapiro wilk test.

> shapiro.test(women[,1])

 Shapiro-Wilk normality test

data: women[, 1]

W = 0.9636, p-value = 0.7545

> shapiro.test(women[,2])

TMMJ R: An Introduction

IT services 50

 Shapiro-Wilk normality test

data: women[, 2]

W = 0.9604, p-value = 0.6986

Since both height and weight do not show significant deviation from normality, Pearson
correlation can be used.

> cor.test(women[,1],women[,2],method="pearson")

 Pearson's product-moment correlation

data: women[, 1] and women[, 2]

t = 37.8553, df = 13, p-value = 1.088e-14

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 0.9860970 0.9985447

sample estimates:

 cor

0.9954948

The relevant statistics can be extracted as follows

> cor.test(women[,1],women[,2],method="pearson")$p.value

[1] 1.088019e-14

> cor.test(women[,1],women[,2],method="pearson")$estimate

 cor

0.9954948

Caution: Correlation coefficient of zero does not necessarily mean that there is no

relationship between the 2 variables. The scatterplots below demonstrate non-linear

relationships between 2 variables

R: An Introduction TMMJ

 51 IT Services

Pearson correlation = -0.09 Pearson correlation = -0.08

9.5. Regression

Fitting linear models can be performed with the command lm(). The example below
examines regression of weight on height for the R dataset ‘women’ described above.

> summary(lm(women[,1]~women[,2]))

Call:

lm(formula = women[, 1] ~ women[, 2])

Residuals:

 Min 1Q Median 3Q Max

-0.83233 -0.26249 0.08314 0.34353 0.49790

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.723456 1.043746 24.64 2.68e-12 ***

women[, 2] 0.287249 0.007588 37.85 1.09e-14 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.44 on 13 degrees of freedom

Multiple R-squared: 0.991, Adjusted R-squared: 0.9903

F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14

The relevant values can be extracted as follows

TMMJ R: An Introduction

IT services 52

P value : summary(lm(women[,1]~women[,2]))$coeff[2,4]

Regression coefficient: summary(lm(women[,1]~women[,2]))$coeff[2,1]

Residuals: summary(lm(women[,1]~women[,2]))$residuals

Other regression models can be fitted with the glm function using the ‘link’ option. The
various options are given below. They can also be found on the glm function help page.

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse")

inverse.gaussian(link = "1/mu^2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")

quasibinomial(link = "logit")

quasipoisson(link = "log")

9.6. Probability Distributions

R has a set of built-in functions related to probability distributions.

These functions can evaluate the

- probability density function (prefix the name with ‘d’)

- cumulative distribution function (prefix the name with ‘p’)

- quantile function (prefix the name with ‘q’)

- simulate from the distribution (prefix the name with ‘r’)

where the name refers to a set of R names eg. ‘binom’ (binomial), ‘chisq’ (chi square), ‘hyper’
(hypergeometric) etc. The full list can be found on the official R manual accessible here

http://cran.r-project.org/doc/manuals/R-intro.pdf

9.7. Other Statistical Features

R has a large compendium of statistical features, which are constantly being added by users
in the form of new packages (later chapter).

Some of the commonly used statistical features include

 Maximum likelihood models – commands depend on the model being fitted. More
information can be found here http://www.stat.umn.edu/geyer/5931/mle/mle.pdf

 Mixed models – the nlme package is recommended, with the functions lme() and
nlme()

 Local approximating regression – the loess() function performs a non-parametric
regression

 Principal Components Analysis/Singular Value Decomposition – The former can be
performed with the prcomp() or princomp() function. The latter can be performed
with the svd() function. Be careful of whether rows/columns are standardised or
centred

 Robust regression – Many functions are contained in the MASS package

 Clustering – various types of clustering functions exist eg. hclust() does hierarchical
clustering

 Tree-based models – these can be found in packages rpart and tree

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.stat.umn.edu/geyer/5931/mle/mle.pdf

R: An Introduction TMMJ

 53 IT Services

 Machine learning – various unsupervised learning algorithms can be easily
implemented in R eg. support vector machines with the function svm(), neural
networks with the package nnet(), random forests with the package randomForest

9.8. Packages

Many of these statistical features are found in packages developed by users. These packages
can be installed within the R environment with the command

> install.packages(“package_name”)

Packages have been developed for statistical analysis in different disciplines:

1. Bioinformatics

Many of the packages for bioinformatics are embedded with the ‘bioconductor’ environment.
Bioconductor can be downloaded from http://www.bioconductor.org/

2. Social Sciences

Most of the functions needed for social sciences can be found in the base packages. Further
details are here http://cran.r-project.org/web/views/SocialSciences.html

3. Financial Engineering

Many of the functions can be found in this suite of packages ‘R/Rmetrics’

These are but a few examples. The CRAN repository contains a full list of packages that can
be downloaded. Packages that not within that repository have to be downloaded and installed
manually with by clicking on Packages|Instal l packages from local z ip f i le

Exercise 8 Statistics in R

In this exercise, we will explore statistics in R

 Task 1

Comparing 2 groups

 Step 1

The text file ‘district.txt’ contains the ages of residents in 2 different
districts. Plot the ages as a histogram to asses normality.

 Step 2

Use the appropriate test to check whether there is a statistically
significant difference between the ages of residents in the 2 districts.

 Task 2

Correlation

 Step 1

The file ‘ageweight.txt’ contains information about the age and weights
of participants in a clinical study. There are 2 groups of participants –
healthy controls and patients with carpal tunnel syndrome. Plot the
age variable vs the weight variable on a graph to assess if the
relationship is linear.

 Step 2

Create histograms of ages and weights to assess whether these
variables have a normal distribution. What correlation test is
appropriate for this situation?

 Step 3

Perform the correlation test on the whole dataset

 Step 4

Perform the correlation test separately on patients and on controls

http://www.bioconductor.org/
http://cran.r-project.org/web/views/SocialSciences.html

TMMJ R: An Introduction

IT services 54

10 Writing your own functions

When you need to perform a repeated function in R, a function can be written to perform
this. The syntax to write a function is

my_function <- functionx(x){

commands(x) -> y

return(y)}

Taking the example in the ‘loops’ exercise

The dataset in question is ‘airquality’

> head(airquality)

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

For each day, we would like to create a conditional score based on temperature and solar
radiation. If the solar radiation is higher than 150 units and the temperature is higher than
60 degrees fahrenhait, the score should be 1. If not, it should be 0. Write an ifelse statement
to calculate this score for the all days in the dataset. You should end up with a vector of zeros
and ones. The vector should be the same length as the number of rows in the dataset.

Instead of writing a loop, we can write a function and apply it to the matrix. The argument to
the function would be row of the matrix

The function would be written as follows

calc_score <- function(x){

ifelse(x[2]>150|x[4]>60,1,0) -> y

return(y)}

The function can then be applied to the matrix as follows

apply(airquality, 1, calc_score) -> result

R: An Introduction TMMJ

 55 IT Services

11 References

The manual titled “An Introduction to R” located on the official R website at http://cran.r-
project.org/doc/manuals/R-intro.pdf is the main reference used in the creation of this
document. Other references, with hyperlinks, are documented in the relevant text passages.

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf

