
MATLAB®: Graphics
Bruce Beckles, Bob Dowling1

This is a self-paced course. The demonstrator will get you going and illustrate the various milestones you
are expected to reach, but mostly you will be able to work at your own pace. You can ask questions or seek
help at any point; simply ask one of the demonstrators.

You are expected to type the MATLAB2 instructions that appear next to the graphs or screen shots.

Note that to improve readability we have artificially tweaked the thickness of the curves and lines in the
pictures (we’ll see how to do that later on in the course). We’ve also increased the font size of the axis
labels, which means that the pictures here may show fewer “tick marks” on their axes than what you see on
your screen after you’ve typed in the MATLAB instructions next to the pictures on your computer – if this
happens, don’t worry about it; unless we explicitly told you to set the tick marks then it doesn’t mean you’ve
done anything wrong.

Setting up
If you are doing this course as part of a UCS course then your home directory will have already been set up
with various files.

If you are doing this on your own computer you should create a directory to work in. The data file used in the
example below can be downloaded from
http://www-uxsup.csx.cam.ac.uk/courses/MATLAB_GX/data1.dat.

Recap
We will start with a quick recap of what we think you already ought to be able to do from previous use of
MATLAB. The UCS course “MATLAB®: Introduction for Absolute Beginners”3 teaches you how to launch
MATLAB and to create a simple graph of a polynomial function over a specified range, y=x2-1 for -2≤x≤+2, for
example.

x = linspace(-2, 2, 100);

y = x.^2 - 1;

plot(x, y)

Note how we use array exponentiation (.^) to
calculate y rather than normal exponentiation (^).
Since x is a vector, we must tell MATLAB to use an
array operation and so act on each element of the
vector. If x is a vector, then “y = x^2 - 1” will not
work as expected.

You might also want to plot other functions. If the function you wish to plot will accept a vector of points as
input and return a vector of the function applied to each of those input points (as most of MATLAB’s built-in
scalar functions do), then this is very simple, as in the example overleaf which uses the exp built-in MATLAB
function (exp(x) calculates ℮x).

1 This course is based on Bob Dowling’s “Mathematica: Graphics” course. Any mistakes, inadequacies,
etc. in this course, however, are all my (Bruce Beckles’) responsibility.

2 MATLAB® is a registered trademark of The MathWorks, Inc.
3 For further details of this course, see:

http://www.training.cam.ac.uk/ucs/course/ucs-matlab

MATLAB®: Graphics 2/22

x = linspace(-2, 2, 100);

y = exp(x);

plot(x, y)

Of course, the function you want to plot may not be that well behaved – in this case you can use MATLAB’s
built-in arrayfun function to help you. You can use arrayfun with any function that accepts scalar input
and returns scalar output, whether or not it also accepts vector input. arrayfun takes a function and
applies it to each element of the input matrix it has been given. It returns an output matrix of the same size
as the input matrix whose elements are the result of applying the function to the corresponding element of
the input matrix. Recall that we must precede the function’s name with “@” to make it into a function handle
so that we can pass it to arrayfun as input.

x = linspace(-2, 2, 100);

y = arrayfun(@exp, x);

plot(x, y)

Finally, you might want to repeat a sequence of commands a certain number of times. You can do this with a
for loop, as shown below:

Note the syntax for the for loop (shown overleaf):

for n = 5:0.1:5.5

disp(n)

end

3/22 MATLAB®: Graphics

for “loop variable” = start:step-size:finish

MATLAB command

another MATLAB command

…and so on

end

The “loop variable” is the name of a variable MATLAB should use as a counter for the loop. On the first
iteration of the loop, it will be set equal to start, and then gradually increase by step-size on each
iteration until it reaches finish. The loop stops as soon as the counter is greater than finish. (Note that
step-size can be negative.) The keyword end indicates that we have finished the commands that should
be executed on each iteration of the loop. You can get help on for loops by typing “help for” in
MATLAB’s Command Window.

These four simple procedures are all you need to start on the course.

Plotting external data
Of course, you may not want to plot a simple function. Your data may be imported from some other source.
MATLAB can import matrices or vectors of data points and plot them.

For the purposes of this course we have created some data files which you unpacked as part of the setting
up. The one we want for now is called “data1.dat”. The function to import the data is called
“importdata”:

data1 = importdata('data1.dat')

The importdata function understands the format of
many different file types, and it primarily works out
what type of file it is importing by the file’s extension
(“.dat” in this case). MATLAB expects files ending in
.dat to be text files containing delimited (i.e.
separated by a given sequence of characters) data.
You can get help on the importdata function by
typing “help importdata” in MATLAB’s Command
Window.

data1 is a MATLAB matrix. It is a collection of (x,y) points, with the x points in the first column of the matrix,
and the corresponding y points in the second column. We can tell MATLAB to plot the points on a graph with
the plot function:

MATLAB®: Graphics 4/22

plot(data1(:,1), data1(:,2), '.')

Note how we give plot the x points as a column
vector (the first column of data1) and the y points as
another column vector (the second column of data1).

We also tell plot that instead of joining the points up
as it normally does, it should just plot each point. We
do this by giving an optional line specification, as a
string. This particular string, '.', tells plot to just
plot the points using a “point” as a marker for each
point, but not to join them up. We will meet the full
range of line specifications shortly.

Contrast this with using plot on data1 without specifying a line specification:

plot(data1(:,1), data1(:,2))

Once again, note how we give plot the x points as a
column vector (the first column of data1) and the y
points as another column vector (the second column
of data1).

Exporting graphs
As well as importing data to create graphs from we may want to export our graph for use elsewhere. We can
do this with the print command. The easiest way to do this is to first create the graph in a Figure window
and then export it using print.

So first we create the graph:

x = linspace(-2, 2, 100);

y = x.^2 - 1;

plot(x, y);

This uses the function y=x2-1 we plotted previously.

5/22 MATLAB®: Graphics

and then we export it as a Portable Network Graphics (PNG) graphics file4:

You should now have the corresponding graphics file in your current directory.

Note the existence of “graph1.png”.

All of this course’s practicals will consist of creating a graph of some form or another and then exporting it as
a file. To make sure you can export a graphics file, our first practical will be to do just that.

Practical 1
1. In MATLAB create a graph of y=x3, -1≤x≤1.

2. Export it to a file called “practical1.png” in your current directory.

3. To check that it has worked, minimise MATLAB and then navigate to the directory in the file system
and check you have a file called “practical1.png”. Double-click on it to see the graph in all its
glory.

Taking control of the graph
Next we will fine-tune exactly what the graph looks like. The plot function as we have used it thus far takes
two arguments, the x- and y-values to be plotted (although we have seen there can be an optional third string
argument giving the line specification). MATLAB then derives the x- and y-ranges that it thinks are
appropriate and selects its own tick marks, colour scheme, etc. In this section we will see how to take
explicit control of these settings.

We will start by adjusting the axes, as MATLAB’s choices are not always ideal.

4 If you have not come across PNG files before, see the Wikipedia entry on them for more information:
http://en.wikipedia.org/wiki/Portable_Network_Graphics

print -dpng graph1.png

The -dpng tells print to export the figure as a PNG
file.

You can find out more about the print command and
the different graphic formats to which it can export
graphical objects by typing “help print” in
MATLAB’s Command Window.

MATLAB®: Graphics 6/22

For example, consider the function y=℮x2 for -5≤x≤+5:

x = linspace(-5, 5, 100);

y = exp(x.^2);

plot(x, y)

We can take explicit control of the axes by defining the plotted x- and y-ranges with axis. For instance, we
can give an exact range with axis([xmin xmax ymin ymax]), as in the following example:

What is the point of having to specify the x-range to be calculated (“x = linspace(-5,5,…”) and the x-
range to be plotted (“axis([-5 5 …”)? We may want to float a graph for -1≤x≤1, say, in a set of axes
running from -2≤x≤2 and by specifying the x-range in two separate places we can do this easily:

x = linspace(-1, 1, 20);

y = exp(x.^2);

plot(x, y);

axis([-2 2 0 5])

axis off turns off the axes altogether (axis on restores the axes). If you have manually set the x- and
y-ranges, you can return to the default setting (MATLAB works it out for you) using axis auto. Also, if you
want MATLAB to determine one of the limits of the x- or y-ranges you can just substitute Inf (for an upper

x = linspace(-5, 5, 100);

y = exp(x.^2);

plot(x, y);

axis([-5 5 0 50])

7/22 MATLAB®: Graphics

limit) or -Inf (for a lower limit), e.g. axis([-2 2 0 Inf]) will use the specified x-range, start the y-range
at 0, and allow MATLAB to determine the upper limit of the y-range. Try axis([-2 2 0 Inf]) and see
how the graph changes before continuing.

There are a few other commands and functions that can set properties of the graph, detailed below. You
should try these out for yourself before moving on:

box on puts a box around the axes (the default), and box off removes it. (This only has any effect if the
axes haven’t been turned off.)

set(gca,'XTick',[-1 0 1]) sets where the “tick marks” on the x-axis are. The vector you use to
specify the tick marks must be in increasing order of value, but the values do not need to be equally spaced,
so set(gca,'XTick',[-1 0 0.5]) would work. If you want to go back to default setting (i.e. MATLAB
works it out for you), use set(gca,'XTickMode','auto').

set(gca,'YTick',[1.0 1.5 2.0 2.5 3.0]) sets where the “tick marks” on the y-axis are. The vector
you use to specify the tick marks must be in increasing order of value, but the values do not need to be
equally spaced, so set(gca,'YTick',[1.0 2.0 3.5]) would work. To return to the default setting, use
set(gca,'YTickMode','auto').

(The set function allows us to manipulate all the properties of the graphics objects that MATLAB creates. In
order to use set we have to specify the object whose properties we wish to modify as the first argument we
give to set. gca returns a special sort of handle (that set understands) that identifies the current axis in the
current figure. Hence set(gca,'XTick', …) modifies the XTick property of the current axis, which
controls where the tick marks are placed on the x-axis.)

set(gca,'XTickLabel',{'x1', 'x2', 'x3'}) specifies the text to be used as the labels for the tick
marks on the x-axis. The labels are arranged starting from the lowest valued tick mark to the highest value
tick mark. If you don’t specify enough labels for all the tick marks then MATLAB starts from the first label
again. (Note the use of curly braces {} to surround the collection of text labels.) To return to the default
labels MATLAB gives you, use set(gca,'XTickLabelMode','auto').

set(gca,'YTickLabel',{'1.0', '1.5', '2.0', '2.5', 'almost pi'}) specifies the text to be
used as the labels for the tick marks on the y-axis. The labels are arranged starting from the lowest valued
tick mark to the highest value tick mark. If you don’t specify enough labels for all the tick marks then
MATLAB starts from the first label again. (Note again the use of curly braces {} to surround the collection of
text labels.) To return to the default labels, use set(gca,'YTickLabelMode','auto').

grid on displays a grid of lines across the graph (grid off removes it again). You can also make the
grid more or less fine-grained with grid minor – be careful not to swamp the actual curve. (grid minor
is a toggle setting, which only has any effect when the grid is displayed. The default is to show a more
coarse-grained grid that only uses the major grid lines. grid minor switches between this default state
and showing the finer-grained minor grid lines as well.) Note that the grid will not be shown if the axes have
been turned off.

Next we turn our attention to the descriptive text and legend we might want for a graph. You should try these
out for yourself before continuing.

title('Title of graph') specifies the text to be used as the title of the graph. It will be centred at the
top of the current set of axes. You can find out more about what you can do with title by typing
“doc title” in the Command Window.

legend('Data series') specifies the text to be used in the legend of the graph. It will be placed just
inside the top right corner of the current set of axes. legend hide will hide the legend and legend show
makes the legend visible again (if you haven't already created a legend legend show creates one for you
using some default text). legend boxoff makes the background box around the legend disappear (when
the legend is shown), whilst legend boxon makes the background box around the legend visible (when the
legend is shown). If you want to completely destroy the legend (rather than just temporarily hiding it), use

MATLAB®: Graphics 8/22

legend off. You can find out more about what you can do with legend by typing “doc legend” in the
Command Window.

xlabel('x-axis label') specifies the text to be used to label the x-axis. Note that this is the label of
the x-axis itself, not the tick marks on the axis. It will be placed beside the x-axis. You can find out more
about what you can do with xlabel by typing “doc xlabel” in the Command Window.

ylabel('y-axis label') specifies the text to be used to label the y-axis. Note that this is the label of
the y-axis itself, not the tick marks on the axis. It will be placed beside the y-axis. ylabel takes all the
same options as xlabel, as can be seen by typing “doc ylabel” in the Command Window.

(Similarly, zlabel is used to label the z-axis for 3 dimensional graphs (which we haven’t met yet). It takes
the same options as xlabel and ylabel, as can be seen by typing “doc zlabel” in the Command
Window.)

text(0.0, 1.0, 'some text') specifies that some text be placed at the specified x- and y co-ordinates
of the current graph, (0.0, 1.0) in this case. You can find out more about what you can do with text by
typing “doc text” in the Command Window.

Next we turn our attention to the curve itself. We will want to modify the nature of the curve itself especially
when we have multiple curves on the same axes but for now we will focus on a single curve.

The nature of the curve is most usefully controlled by the optional line specification argument to the plot
function. (You can read about the values this line specification argument can take in MATLAB’s Help
browser by typing “doc LineSpec” in the Command Window, but for convenience the values are
summarised below.)

The line specification argument is a string made up of three parts, any of which can be omitted, and which
can be given in any order. Each part controls a different aspect of the curve as follows:

Line Style:

Specifier Line Style
- solid line (the default)

-- dashed line

: dotted line

-. dash-dot line

Marker Specifiers:
The marker specifiers control what sort of markers, if any, are used to indicate the points of the curve on the
plot. The default is not to indicate the individual points on the curve but instead to join them using a solid
line. You can use both a marker specifier and a line specifier together which will produce a curve whose
individual points are indicated by the specified marker and are joined together by a line of the specified style.
If a marker specifier is used without a line specifier then the points on the curve will not be joined by a line.

Specifier Marker Type
+ plus sign (+)

o circle

* asterisk (*)

. point

x cross

s (or square) square

d (or diamond) diamond

9/22 MATLAB®: Graphics

Specifier Marker Type
^ upward-pointing triangle

v downward-pointing triangle

> right-pointing triangle

< left-pointing triangle

p (or pentagram) 5-pointed star (pentagram)

h (or hexagram) 6-pointed star (hexagram)

Colour:

Specifier Colour
r red

g green

b blue

c cyan

m magenta

y yellow

k black

w white

At most one specifier from each of the three types of specifier above can be mixed in any combination to
produce truly bewildering styles of curves. For example:

Or:

x = linspace(-1 , 1, 20);

y = x.^2;

plot(x, y, 'vc--')

You should experiment with different combinations of
these specifiers before moving on; they are easily the
most commonly used way of controlling MATLAB’s
graphs.

x = linspace(-1, 1, 20);

y = x.^2;

plot(x, y, 'gpentagram')

Note that exactly the same plot is produced if we use
plot(x, y, 'pg') instead – the order in which the
specifiers are listed (and whether the long or short
form is used for those specifiers, like 'pentagram',
that have long and short forms) is irrelevant.

MATLAB®: Graphics 10/22

What if we want to specify a colour that does not have a colour specifier? How can we do this? The plot
function can take additional optional arguments that specify other properties of the plot (such as the colour of
the line). These additional arguments are specified after the line specification argument, if this is being
given. These arguments are specified in pairs: the first argument is the name of the property (as a string),
the second argument is its value).

The colour of a line is controlled by the Color property, whose value is a 3 item row vector that specifies the
RGB value of the colour. The first element of the row vector specifies the intensity of the red component of
the colour, the second the intensity of the green component, and the third the intensity of the blue
components. The intensity of each component must be a number between 0 and 1. (Some people may be
more familiar with the computing habit of using three ranges of integers from 0 to 255 for this purpose.)
Below is a table listing the RGB values of the colours for which MATLAB has colour specifiers:

RGB
vector

Colour MATLAB
short name

MATLAB
long name

[1 0 0] red r red

[0 1 0] green g green

[0 0 1] blue b blue

[0 1 1] cyan c cyan

[1 0 1] magenta m magenta

[1 1 0] yellow y yellow

[0 0 0] black k black

[1 1 1] white w white

So, for example:

Or:

x = linspace(-1, 1, 20);

y = x.^2;

plot(x, y, 'Color', [0.8 0.7 0.5])

(Apparently, this colour is some sort of tan.)

x = linspace(-1, 1, 20);

y = x.^2;

plot(x, y, '--', 'Color', [1 0.5 0])

(Apparently, this colour is coral.) Note how we use a
line specification as well as setting the colour via the
Color property.

11/22 MATLAB®: Graphics

Suppose we now want to set the thickness of the line of the curve. (We have already been using this behind
the scenes to give visible lines for this set of notes because whilst the default line thickness often looks fine
on the screen it often doesn’t look so good on the laser-printed page.) The thickness of the line drawn for a
graph is controlled by the LineWidth property. The LineWidth gives the width or thickness of the line in

points (1 point =
1
72 inch). The default LineWidth is 0.5 points. Unless otherwise stated, the graphs

shown in this handout all have a LineWidth of 4.0 points.

So here is a graph explicitly plotted with a LineWidth of 4.0 points:

x = linspace(-1, 1, 20);

y = x.^2;

plot(x, y, 'LineWidth', 4.0)

x = linspace(-1, 1, 20);

y = x.^2;

plot(x, y)

(This graph really was plotted with the default
LineWidth of 0.5 points – you can see how difficult it
is to see the line on the printed page.)

MATLAB®: Graphics 12/22

But we don’t want the thickness setting to get in the way of the colour. How can we combine the results into
a single graph? We do this by simply telling plot all the properties whose values we want to set (we list
these arguments after we have given it the (x,y) values to plot and any line specification argument we may
wish to use).

x = linspace(-1, 1, 20);

y = x.^2;

plot(x, y, 'Color', [0.5 0 0.5],
'LineWidth', 4.0)

(This colour is a light magenta.)

Note that it doesn’t matter whether we specify the
Color property and its value first or the LineWidth
property and its value first; plot doesn’t care.

Note that there are other properties which can be set that affect the graph which we have not mentioned, but
the ones covered here are the most commonly useful.

Practical 2
Work out the MATLAB commands necessary to create
this graph. The curve is y=(x+1)2. You don’t need to
get the colour exactly the same, although the colour of
your graph should be similar.

(Note that if you are looking at a printed copy of these
notes then depending on the printer used to print them
out, it may appear that there is a solid horizontal line
running across the graph around y=0. This is a
printing artefact and should be ignored.)

13/22 MATLAB®: Graphics

Multiple graphs
Next we will plot multiple curves on the same set of axes. There are various ways we can do this. The first,
and easiest, way to do this is to create a matrix of the y-values of the functions we want to plot and then plot
the matrix with plot.

x = linspace(-3, 3, 20);

VALUES = [(x - 2).^2 ; (x - 1).^2 ; x.^2
; (x + 1).^2 ; (x + 2).^2];

plot(x, VALUES)

Note that it is vital to separate the different functions
in our matrix with a semi-colon (;), so that we end up
with a matrix each of whose columns contains the
y-values for a particular function.

MATLAB has default colours for each graph but we may want to change them, possibly use different line
specifications for each graph, etc. There are various ways of doing this, but we’re just going to look at the
most versatile way of doing this here. This involves using multiple plotting functions and having them all
display their output in a single figure.

Normally each time you call a function that plots something it clears the current figure. You can stop this
behaviour with hold on. hold off will return to the default behaviour of clearing the current figure
between plots.

By doing this we can completely customise each curve to our heart’s content since we just plot the curve with
whatever customisations we want as we normally would, and then go on to plot the next curve, and so on.

x = linspace(-3, 3, 20);

y1 = (x - 2).^2;

y2 = (x - 1).^2;

y3 = x.^2;

y4 = (x + 1).^2;

y5 = (x + 2).^2;

plot(x, y1);

hold on;

plot(x, y2, 'k');

plot(x, y3, 'r--');

plot(x, y4, '+g');

plot(x, y5, 'Color', [0.5 0 0.5])

hold off

Remember to use hold off when you’ve finished plotting your curves on the same graph.

MATLAB®: Graphics 14/22

Note that MATLAB adjusts the axes automatically for us so that all the curves can fit on the plot. If we don’t
want this, or if MATLAB’s auto-scaling proves to be sub-optimal, then we should set the ranges ourselves
with axis.

Practical 3

Animation
Using hold on merges various graphs into a single plot. An alternative is to animate the sequence. We
can do this by plotting each frame of the animation in turn and then capturing it with getframe. We store
each frame in an array and then use movie to generate an animation of them in sequence.

When creating an animation it is even more important to set the plot ranges explicitly. If you don’t then the
axes of each graph will take effect as that graph is shown and they will wobble up and down as the animation
proceeds. For example, consider the following animation:

movie takes an optional argument which tells it how many times to play the animation, e.g. in the above
example movie(M, 3) would play the animation 3 times. If the number of times specified is negative, then
each time the animation is played it will play once forward, and then once backward, so movie(M, -2)
would play the animation four times in total: once forward, then once backward, then forward again, and
finally backward.

Reproduce this graph and save it as a file
practical3.png in your current subdirectory.

The graph has curves for y=x in red, y=x2 in green and
y=x3 in blue.

frame = 1;

x = linspace(-3, 3, 20);

for n = -2:0.1:2

y = (x - n).^2;

hold off;

plot(x, y);

axis([-3 3 0 25]);

M(frame)=getframe;

frame = frame + 1;

end

movie(M)

Now try the above instructions again but without using the axis instruction and keep an eye on the y-axis.

15/22 MATLAB®: Graphics

MATLAB supports exporting animations to the AVI file format5, but unfortunately it doesn’t support very many
types of AVI file. On UNIX/Linux (including MacOS X), MATLAB only supports exporting to uncompressed
AVI files which, as you might guess from the word “uncompressed”, are extremely large. On Windows it
supports a few more options, but exactly which ones depend on what video compressors (the jargon term for
a video compressor is “codec”) have been installed on the system. The command you use to export an
animation is movie2avi – for further details type “help movie2avi” in the Command Window.

Note though, that the default setting for movie2avi for MATLAB under PWF Windows produces an AVI file
that Windows Media Player doesn’t seem able to play. You can produce an uncompressed AVI file of the
animation above, in a file called test.avi, that Windows Media Player can play (but which is very large)
using the following command:

movie2avi(M, 'test.avi', 'compression', 'None')

Implicit functions
Sometimes we do not have y as an explicit function of x, but rather an equation relating the two values. For
example, suppose we wanted to plot the curve satisfying x2/25+y2/9 = 1. We will use a MATLAB command
called contour to do this. Note that we first have to create a meshgrid from the x- and y-ranges. Note
also how we specify that we want to plot the values that satisfy z = 1 by saying we want the contour for the
level “1” (by specifying the row vector [1 1]).

t = linspace(-6, 6, 100);

[x, y] = meshgrid(t, t);

z = (x.^2)/25 + (y.^2)/9;

contour(x ,y ,z, [1 1])

Note that we specify that we want the contour v by
using the row vector [v v]. This is slightly odd, and
we’ll see the reason for it shortly. (If we want to
specify more than one contour, the syntax is what you
would expect: for the contours v1 and v2, we would use
the row vector [v1 v2]; for the contours v1, v2 and v3

we would user the row vector [v1 v2 v3]; and so on.)

If we don’t explicitly specify any contours then MATLAB will choose them for us, as shown overleaf:

5 If you have not come across AVI files before, see the Wikipedia entry on them for more information:
http://en.wikipedia.org/wiki/Audio_Video_Interleave

MATLAB®: Graphics 16/22

t = linspace(-6, 6, 100);

[x, y] = meshgrid(t, t);

z = (x.^2)/25 + (y.^2)/9;

contour(x ,y ,z)

If we want a filled contour plot, we need to use the function contourf instead of contour. Its syntax is the
same as that of contour.

t = linspace(-6, 6, 100);

[x, y] = meshgrid(t, t);

z = (x.^2)/25 + (y.^2)/9;

contourf(x ,y ,z)

Note that MATLAB will select the values to plot contours for. contour (and contourf) take an optional
argument to take explicit control of this in one of two ways. We’ve already seen that if we use a row vector of
the form [1 2 3] then MATLAB will plot 3 contours matching the values 1, 2, and 3. If, instead of a row
vector, we use a single positive integer then MATLAB will plot that many equally spaced contour lines (try
this out for yourself). This is the reason that if we want to plot a single contour matching a specific value, v,
we need to specify it as [v v]: MATLAB can’t tell the difference between [v] and v so if v is an integer then
it will treat [v] as the number of contour lines it should produce rather than the single value for which we
want a contour.

We can also give contour and contourf the same line specification argument that we use with plot, and
we can also set additional properties of the graph (Color, LineWidth, etc) in the same way. Note that the
line specification argument and any additional property arguments come after the argument to control the
values or numbers of contours plotted, if given.

Successive contour plots can be collected together and animated just as we did with the output of
successive plot commands earlier.

17/22 MATLAB®: Graphics

Practical 4
Plot the graph shown and save it to a file
practical4.png in your current directory.

The three curves are

y2 + sin2x = 1/2
y2 + sin2x = 1
y2 + sin2x = 3/2

There is more than one way to do this. You only need
one.

Parametric curves
As well as implicit functions a very common way to plot a two-dimensional curve is parametrically. In this
approach we define the x and y coordinates of points as explicit functions of a third variable whose value
changes along the length of the curve.

Consider for example the classic Lissajou figure given by x = sin3t, y = sin5t, for 0≤t≤2π. In MATLAB we plot
this with the plot function exactly as we would a normal equation. (Note, though, that because this curve
bends a lot more and crosses itself much more than other curves we have previously plotted that we need to
plot many more points to get a smooth curve.)

t = linspace(0, 2*pi, 1000);

x = sin(3*t);

y = sin(5*t);

plot(x,y)

MATLAB®: Graphics 18/22

Practical 5

(a) Plot the parametric equation

x = sin(3t+π/20)
y = sin(5t)

for 0≤t≤2π. Save the graph to practical5.png in your current directory.

(b) Use a for loop to create a list of forty plots for the parametric equations

x = sin(3t+d)
y = sin(5t)

each plotted for 0≤t≤2π with d taking values {0, π/20, π/10, ... 39π/20} and animate them.

Explicit three dimensional plots
So far all our graphs have been two dimensional. Now we will move on to three dimensions. However, this
mostly consists of learning the 3D versions of the 2D functions. The naming convention is simple: take the
name of the 2D function and add “3” to the end of it. Also, whilst for the 2D functions we supplied the (x,y)
points to plot, for the 3D functions we will supply (x,y,z) points instead. This is straightforward if we want to
plot a single line in three dimensions (as we will see later). If, however, we want to plot in three dimensions a
set of lines that describe a 2-dimensional surface (or if we want to plot the surface itself), then MATLAB
needs us to first create a meshgrid of (x,y) points and then to calculate z at those points. Finally, a very
important point before we go any further is that when we are plotting surfaces we must not try and plot too
many points too close together or we will end up with a solid outline of the surface (often in black), which is
probably not what we want!

The simplest 3D graphs are “height graphs” where we provide a function specifying z as an explicit function
of x and y. Having first prepared our points with meshgrid, we can use the plot3 function to draw these
graphs (see overleaf).

19/22 MATLAB®: Graphics

t = linspace(-2, 2, 100);

[x, y] = meshgrid(t, t);

z = cos(x.^2 + y.^2) ./ (1.0 + x.^2 +
y.^2);

plot3(x, y, z)

Note that unlike plot, the default for plot3 is to
have the box around the graph turned off. (Recall that
you can turn the box around the graph on with box
on.) Also note that we are only using a 100×100 grid
of points.

MATLAB sets the view point to see the 3D plot from to a default value. We can rotate the surface shown
(equivalent to changing the view point) by choosing the Rotate 3D tool in the Figure window (in the Tools
menu) and dragging the graph with the mouse. (This tool can also be turned on and off with rotate3d on
and rotate3d off). The view point can be set explicitly on any 3D function with view. view([x y z])
sets the view angle in Cartesian co-ordinates (note that the magnitude of the row vector [x y z] is
ignored). view(3) sets the view point to be the default view for 3D plots.

If you choose the Pan tool (also in the Tools menu) instead then as you drag the graph with the mouse it
pans rather than rotates. (This tool can also be turned on and off with pan on and pan off).

You can also zoom by choosing the Zoom In or Zoom Out tools in the Figure Window (in the Tools menu)
and clicking on the graph.

As you probably noticed, though, plot3 is not the greatest function for plotting 3-dimensional surfaces,
since it represents them as a series of discrete curves. MATLAB has two functions that are much better for
plotting 3-dimensional surfaces, surf and mesh, and we’ll look at these next.

mesh plots a coloured 3D mesh surface:

t = linspace(-2, 2, 100);

[x, y] = meshgrid(t, t);

z = cos(x.^2 + y.^2) ./ (1.0 + x.^2 +
y.^2);

mesh(x, y, z)

Note that we are only using a 100×100 grid of points.
If you try this with a a 1000×1000 grid it takes
noticeably longer and instead of a mesh you get a
filled in surface.

MATLAB®: Graphics 20/22

surf plots a 3D coloured surface:

t = linspace(-2, 2, 100);

[x, y] = meshgrid(t, t);

z = cos(x.^2 + y.^2) ./ (1.0 + x.^2 +
y.^2);

surf(x, y, z)

Again note that we are only using a 100×100 grid of
points. If you try this with a a 1000×1000 grid not only
does it take a lot longer, but you end up with a solid
black outline of the surface.

colorbar will display a colour scale next to your graph that indicates the height represented by each colour
on the surface. Try it out. colorbar('off') makes the colour scale disappear again.

Practical 6

Plot the surface z=℮xcos(y) for -1≤x≤1, -π≤y≤π and put
a box around it. Save the graph in a file
practical6.png in your current directory. Whilst
you don’t need to use the exact same view point as
used for the graph to the left, you should use a similar
one (i.e. your graph should look very similar to the one
shown).

21/22 MATLAB®: Graphics

Parametric three dimensional line plots
Just as we could define a 2D point as a function of a single parameter to plot a 2D line we can do the same
with a 3D point to trace a line in 3D.

t = linspace(0, 2*pi, 1000);

x = cos(t).*(cos(7*t) + 2);

y = sin(t).*(cos(7*t) + 2);

z = sin(7*t);

plot3(x, y, z);

grid on

Parametric three dimensional surface plots
Just as we could trace a line with a single parameter we can define a surface with two parameters. We use
the surf function with our surface expressed in terms of two parameters u and v.

[u, v] = meshgrid(linspace(0, 2*pi,
100), linspace(0, 2*pi, 100));

x = cos(u).*(cos(v) + 2);

y = sin(u).*(cos(v) + 2);

z = sin(v);

surf(x, y, z);

view([-0.1 -0.15 0.9])

MATLAB®: Graphics 22/22

Practical 7
Create two 3D parametric torus plots following the
example above by plotting a pair of functions. Keep
one exactly the same as the above example, and for
the other swap the y and z definitions.

Then combine them in a single graph using
successive plots with surf to nearly give the picture
shown.

Tweak the definitions of the x-components of the two
functions to give the diagram shown. (The diagram
shown uses the view point given by
view([-0.4 0.8 0.5]).)

Save the plot as practical7.png.

	MATLAB®: Graphics
	Setting up
	Recap
	Plotting external data
	Exporting graphs
	Practical 1
	Taking control of the graph
	Line Style:
	Marker Specifiers:
	Colour:

	Practical 2
	Multiple graphs
	Practical 3
	Animation
	Implicit functions
	Practical 4
	Parametric curves
	Practical 5
	Explicit three dimensional plots
	Practical 6
	Parametric three dimensional line plots
	
	Parametric three dimensional surface plots
	Practical 7

