
UNIVERSITY OF OXFORD
SOFTWARE ENGINEERING PROGRAMME

Wolfson Building, Parks Road, Oxford OX1 3QD, UK
Tel +44(0)1865 283525 Fax +44(0)1865 283531
info@softeng.ox.ac.uk www.softeng.ox.ac.uk

Part-time postgraduate study in software engineering

Functional Programming, FPR
15th – 19th September 2014

ASSIGNMENT

The purpose of this assignment is to test the extent to which you have
achieved the learning objectives of the course. As such, your answer must
be substantially your own original work. Where material has been quoted,
reproduced, or co-authored, you should take care to identify the extent of
that material, and the source or co-author.

Your answers to the questions on this assignment should be submitted to:

Software Engineering Programme
Department of Computer Science
Wolfson Building
Parks Road
Oxford OX1 3QD

Alternatively, you may submit using the Software Engineering Programme
website — www.softeng.ox.ac.uk — following the submission guidelines.
The deadline for submission is 12 noon on Tuesday, 4th November 2014. If
you have not already returned a signed assignment acceptance form, you
must do so before the deadline, or your work may not be considered. The
results and comments will be available after the next examiners’ meeting,
during the week commencing Tuesday, 23rd December 2014.

ANY QUERIES OR REQUESTS FOR CLARIFICATION
REGARDING THIS ASSIGNMENT SHOULD, IN THE FIRST
INSTANCE, BE DIRECTED TO THE PROGRAMME OFFICE

WITHIN THE NEXT TWO WEEKS.



1 Introduction

This assignment concerns turtle graphics, which is a very simple language for con-
trolling a virtual robot that has a pen. The robot moves around on an unbounded
rectangular grid, staying on integer coordinates. It can be facing north, west,
south, or east; it can turn by 90�. When it moves, it moves by distance 1 in the
direction it is facing. The robot also has a pen, which can be ‘up’ or ‘down’; if the
robot moves while the pen is down, it draws a line from its old position to its new
position.

The robot is controlled via a little language of robot programs, which can be
represented as follows:

data Prog � Move Prog
j Turn Prog
j SwapPen Prog
j Stop

The idea is that

• the program Move x moves the robot forward one square (in the direction it
is currently facing), then continues with program x;

• the program Turn x turns the robot by 90� anticlockwise, then continues
with x;

• the program SwapPen x flips the state of the pen (it puts the pen down if it
was currently up, and lifts the pen up if it was currently down), the continues
with x;

• the program Stop does nothing.

The robot is initially at position �0;0�, facing north, with the pen up. Note that
programs are written in the order of execution; so for example the program

simple � Turn �Move �SwapPen �Move �SwapPen Stop����

turns, then moves forward, then puts the pen down, then moves again, then lifts
the pen up, then stops—it draws a line from ��1;0� to ��2;0�. The slightly longer
program

snail � SwapPen �Move �Turn �Move �Turn �Move �Move �Turn
�Move �Move �Turn �Move �Move Stop������������

draws a square spiral, like this, starting in the centre:

1



2 Exercises

1. Define a function

type PenDown � Bool

penDown :: Prog ! PenDown! PenDown

so that penDown x b represents the final state of the pen for the program x
starting initially with pen state b, where b � True represents the pen being
down and b � False the pen being up.

2. Define a function

dir :: Prog ! Dir ! Dir

so that dir x d represents the final direction the robot is facing after executing
program x, if it starts facing direction d. Here, the directions are the compass
points:

data Dir � North j West j South j East

3. Define a function

forwards :: Dir ! Pos ! Pos

so that forwards d p computes the position one step ‘forwards’ from position
p in direction d.

4. You can view the datatype Dir as the syntactic representation of a very simple
domain-specific language (DSL), having only four possible ‘programs’. Then
the function forwards provides a semantics for that DSL of directions. In
DSL circles, datatype Dir is called a ‘deep embedding’ of the language of
directions. An alternative approach is to use a ‘shallow embedding’, in which
programs in the DSL are represented directly by their semantics:

type Dir2 � Pos ! Pos

Provide implementations of the four directions using this representation.

north;west; south; east :: Dir2

2



5. Define a function

pos :: Prog ! Pos ! Dir ! Pos

so that pos x p d represents the final position of the robot after executing
program x, if it starts in position p facing direction d. Here, positions are
integer pairs:

type Pos � �Integer; Integer�

(Hint: you might want to use forwards).

6. You can view pos as a semantics for the deeply-embedded language Prog.
Provide an alternative representation Prog2 of programs as a shallow em-
bedding, using this semantics.

type Prog2 � :::
move2; turn2;pen2 :: Prog2! Prog2
stop2 :: Prog2

7. We gave a shallow embedding Dir2 of directions in Exercise 4. But we can’t
use this to replace the type Dir in the rest of our code—in particular, we
can’t use Dir2 in the function pos. Why not? How would you provide a
shallow embedding of directions that does allow us to write a function like
Pos (without also using the deep embedding Dir)?

8. Define a function

plot :: Prog ! Pos ! Dir ! PenDown! Picture

so that plot x p d b produces the picture drawn by the robot following
program x, from initial position p facing direction d with the pen in state b.
Here, a Picture is the list of lines the robot draws while the pen is down,
where each line segment is given by its two endpoints:

type Picture � �LineSegment �
type LineSegment � �Pos;Pos�

9. Provide another shallow embedding Prog3 of robot programs using their plot
semantics.

type Prog3 � :::
move3; turn3; swapPen3 :: Prog3! Prog3
stop3 :: Prog3

3



10. It is inconvenient to have two different shallow embeddings Prog2 and Prog3
of robot programs, with correspondingly different implementations of the
constructors move, turn etc. Fortunately, it is possible to provide a single
generic shallow embedding that encompasses both Prog2 and Prog3:

type ProgS a � �a ! a;a ! a;a ! a;a�! a
move; turn; swapPen :: ProgS a ! ProgS a
stop :: ProgS a

move x � ��m; t;p; s�!m �x �m; t;p; s��
turn x � ��m; t;p; s�! t �x �m; t;p; s��
swapPen x � ��m; t;p; s�! p �x �m; t;p; s��
stop � ��m; t;p; s�! s

For example,

turn �move �swapPen �move �swapPen stop���� :: ProgS a

represents the robot program from the introduction. Show how to extract
both the pos semantics and the plot semantics from such a program. (This
is a little tricky, but there’s a short answer.)

11. Write a function to convert the Picture produced by the plot semantics into
Scalable Vector Graphics (SVG), which you can then view in an SVG viewer
such as Google Chrome. I used my answer to this to produce the following
SVG rendition of the plot of the snail program:

<svg width="204" height="204" viewBox="-102,-102,204,204"
xmlns="http://www.w3.org/2000/svg" version="1.1">

<g transform="scale(1,-1)" stroke-width="4" stroke-linecap="round"
stroke="black" fill="none">

<line x1="0" y1="0" x2="0" y2="100"/>
<line x1="0" y1="100" x2="-100" y2="100"/>
<line x1="-100" y1="100" x2="-100" y2="0"/>
<line x1="-100" y1="0" x2="-100" y2="-100"/>
<line x1="-100" y1="-100" x2="0" y2="-100"/>
<line x1="0" y1="-100" x2="100" y2="-100"/>
<line x1="100" y1="-100" x2="100" y2="0"/>
<line x1="100" y1="0" x2="100" y2="100"/>
</g>
</svg>

which I then included as the picture at the start of this document. Hopefully,
the format of SVG is self-explanatory from this example; but if you need more

4



guidance, the specification is at http://www.w3.org/TR/SVG/. I suggest
that you define a simple datatype of content-free XML:

data XML � Element String �Attr � �XML�
type Attr � �String; String�

and then define a function to generate XML and a way of printing it:

svg :: Picture! XML
instance Show XML where :::

Then you can produce the SVG file above by

writeFile "snail.svg" �show �svg �plot snail �0;0� North False���

You may find this helpful in answering the other questions.

5



3 Guidance

The purpose of the assignment is for you to demonstrate your understanding of
functional programming. In principle, you can do that without solving all of the
questions above; and there is no need for you to avail yourself of any of the hints,
if you can see a better way to do it. But if you’re not sure, I advise you to follow
the steps above.

You may be able to find partial solutions to the problems on the web. I recom-
mend that you don’t use them, or at least, don’t rely on them: they are often of
dubious quality, they are likely to implement slightly different specifications, they
typically won’t help your critical review, and they won’t help you learn about func-
tional programming. Whatever you do, do make sure you make clear the source
and the extent of any derivative material.

Submit your answers as a single PDF file, formatted using LATEX, Word or some
other text processor of your choice. I want to see the code and commentary
interleaved. Additionally, submit the solutions in the form of a literate script, a
plain-text LHS file (or several files, if you want to use modules). Also submit some
test data, integrated into the literate script(s), along with a short explanation of
how to invoke the program on the data.

Finally, please structure the PDF file so that there is a cover sheet which contains
only your name, the subject and date, and a note of the total number of pages.
Do not put any answer material on the cover sheet; begin your answer on a fresh
page. Avoid putting your name on any page except the cover page. Please number
the pages and sections.

4 Assessment criteria

The assignment is intended to measure the following, in order of decreasing im-
portance:

• Have you understood the fundamental tools of functional programming:
algebraic data types, pattern matching, higher-order functions, parametric
polymorphism, and lazy evaluation?

• Have you demonstrated an ability to apply these fundamental tools and ac-
companying techniques to a particular case study?

• Do you have the ability to present clear arguments supporting design deci-
sions and discussing trade-offs, concisely and precisely?

• How fluent is your expression in Haskell, and how elegant is the resulting
code?

6


