
Functional Programming, FPR

November 4, 2014

Mayur Pant

20 pages

Contents

1 Questions 1-3, 5, 8, 11
e-copy: Questions_1_3_5_8_11.lhs 2

2 Questions 4, 6, 7, 9, 10
e-copy: Questions_4_6_7_9_10.lhs 9

3 What I have learned 15
1 Review of Section 1 . 15
2 Review of Section 2 . 16
3 End . 20

Summary of contents
For clarity and �ow, I have separated the solution into two sections

(which re�ects the order in which I approached the questions).

Section 1 contains the questions that create the turtle programs.
Section 2 contains the questions for the shallow embeddings.
Section 3 contains my review of what I learned from each question.

1

1 Questions 1-3, 5, 8, 11

e-copy: Questions_1_3_5_8_11.lhs

2

Questions_1_3_5_8_11.lhs

Questions 1-3, 5, 8, 11
=======================

> module Questions_1_3_5_8_11 (Dir, succ_wrap, forwards') where

To prevent duplication, Questions_4_6_7_9_10.lhs imports a data type and two functions.

Introduction
============

> data Prog = Move Prog
> | Turn Prog
> | SwapPen Prog
> | Stop

> snail = SwapPen (Move (Turn (Move (Turn (Move (Move (Turn (Move (Move (Turn (Move (Move
(Stop)))))))))))))

> data Dir = North | West | South | East deriving (Show, Enum, Eq, Bounded)

In function dir of question 2 we require Dir to be part of the Show typeclass.
In function dir of question 2 we require Dir to be part of the Enum typeclass.
In function forwards' of question 3 we require Dir to be part of the Eq typeclass.
In function succ_wrap of question 5 we require Dir to be part of the Bounded typeclass.

1.
==

> type PenDown = Bool
> penDown :: Prog -> PenDown -> PenDown
> penDown (Stop) b = b
> penDown (SwapPen x) b = penDown x (not b)
> penDown (Move x) b = penDown x b
> penDown (Turn x) b = penDown x b

By deriving "Eq" from Prog we could have instead used guards to perform equality tests for Stop and
SwapPen, and then merged Move and Turn into a single otherwise clause; see function forwards' (q. 3)
for an example of shorter code with guards.

Reducing the last two lines with an otherwise clause would make the code faster, but I have illustrated
every pattern here for clarity.

3

Questions_1_3_5_8_11.lhs

1.
==

> type PenDown = Bool
> penDown :: Prog -> PenDown -> PenDown
> penDown (Stop) b = b
> penDown (SwapPen x) b = penDown x (not b)
> penDown (Move x) b = penDown x b
> penDown (Turn x) b = penDown x b

By deriving "Eq" from Prog we could have instead used guards to perform equality tests for Stop and
SwapPen, and then merged Move and Turn into a single otherwise clause; see function forwards' (q. 3)
for an example of shorter code with guards.

Reducing the last two lines with an otherwise clause would make the code faster, but I have illustrated
every pattern here for clarity.

2.
==

> dir :: Prog -> Dir -> Dir
> dir (Stop) d = d
> dir (Turn x) East = dir x North
> dir (Turn x) d = dir x (succ d)
> dir (Move x) d = dir x d
> dir (SwapPen x) d = dir x d

Here we need datatype Dir to be part of the Enum typeclass so we can iterate through Dir with function
succ (module Prelude), and we derive Show so we can display the result in our tests.

Since function succ does not wrap around we include an exception for East (we could have written an
alternate succ function that does wrap - see
http://stackoverflow.com/questions/5684049/is-there-some-way-to-define-an-enum-in-haskell-that-wraps-a
ound, answer by "T_S_"). We utilize this in q. 5 (function succ_wrap), which we export in our module as
well.

3.
==

> type Pos = (Integer, Integer)
> forwards :: Dir -> Pos -> Pos
> forwards North (x, y) = (x, y+1)
> forwards West (x, y) = (x-1, y)
> forwards South (x, y) = (x, y-1)
> forwards East (x, y) = (x+1, y)

Alternative:
If datatype Dir is part of the Eq typeclass, we can save keystrokes by using guards (and could have
used keyword "where" to make aliases like "oneUp", "oneLeft", etc. - we use "where" in function plot'
of q. 8).

> forwards' :: Dir -> Pos -> Pos
> forwards' d (x, y)
> | d == North = (x, y+1)
> | d == West = (x-1, y)
> | d == South = (x, y-1)
> | d == East = (x+1, y)

4

Questions_1_3_5_8_11.lhs

2.
==

> dir :: Prog -> Dir -> Dir
> dir (Stop) d = d
> dir (Turn x) East = dir x North
> dir (Turn x) d = dir x (succ d)
> dir (Move x) d = dir x d
> dir (SwapPen x) d = dir x d

Here we need datatype Dir to be part of the Enum typeclass so we can iterate through Dir with function
succ (module Prelude), and we derive Show so we can display the result in our tests.

Since function succ does not wrap around we include an exception for East (we could have written an
alternate succ function that does wrap - see
http://stackoverflow.com/questions/5684049/is-there-some-way-to-define-an-enum-in-haskell-that-wraps-a
ound, answer by "T_S_"). We utilize this in q. 5 (function succ_wrap), which we export in our module as
well.

3.
==

> type Pos = (Integer, Integer)
> forwards :: Dir -> Pos -> Pos
> forwards North (x, y) = (x, y+1)
> forwards West (x, y) = (x-1, y)
> forwards South (x, y) = (x, y-1)
> forwards East (x, y) = (x+1, y)

Alternative:
If datatype Dir is part of the Eq typeclass, we can save keystrokes by using guards (and could have
used keyword "where" to make aliases like "oneUp", "oneLeft", etc. - we use "where" in function plot'
of q. 8).

> forwards' :: Dir -> Pos -> Pos
> forwards' d (x, y)
> | d == North = (x, y+1)
> | d == West = (x-1, y)
> | d == South = (x, y-1)
> | d == East = (x+1, y)

5.
==

succ_wrap :: (Bounded a, Enum a, Eq a) => a -> a

We read this type signature as follows: succ_wrap's input and output values are of the same type, and
must be a member of the Bounded, Enum and Eq classes (our 3 class constraints).
Terminology source: http://learnyouahaskell.com/types-and-typeclasses#typeclasses-101
(1988) R. Bird, Introduction to Functional Programming using Haskell, Ch. 2.1.1, p.32

Let's consider the definition for parametric polymorphism vs. ad hoc polymorphism:
"The idea that something is applicable to every type or holds for everything is called universal
quantification. In mathematical logic, the symbol .. an upside-down A, read as "forall" .. is commonly
used for that, it is called the universal quantifier .. parametric polymorphism = ignorant of the type
actually used. => \forall" http://en.wikibooks.org/wiki/Haskell/Polymorphism#Parametric_Polymorphism

"Parametric polymorphism refers to when the type of a value contains one or more (unconstrained) type
variables .. Since a parametrically polymorphic value does not "know" anything about the unconstrained
type variables, it must behave the same regardless of its type."

"You can recognise the presence of ad-hoc polymorphism by looking for constrained type variables: that
is, variables that appear to the left of =>, like in elem :: (Eq a) => a -> [a] -> Bool."
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism

We say that succ_wrap is an ad-hoc polymorphic function as it is constrained to 3 classes.

> succ_wrap d | d == maxBound = minBound
> | otherwise = succ d

We use this function in preference to succ because we want datatype Dir to wrap around. Source: See
discussion of q.2.

> pos :: Prog -> Pos -> Dir -> Pos
> pos (Stop) p d = p
> pos (Move x) p d = pos x (forwards' d p) d
> pos (Turn x) p d = pos x p (succ_wrap d)
> pos (SwapPen x) p d = pos x p d

5

Questions_1_3_5_8_11.lhs

> forwards South (x, y) = (x, y-1)
> forwards East (x, y) = (x+1, y)

Alternative:
If datatype Dir is part of the Eq typeclass, we can save keystrokes by using guards (and could have
used keyword "where" to make aliases like "oneUp", "oneLeft", etc. - we use "where" in function plot'
of q. 8).

> forwards' :: Dir -> Pos -> Pos
> forwards' d (x, y)
> | d == North = (x, y+1)
> | d == West = (x-1, y)
> | d == South = (x, y-1)
> | d == East = (x+1, y)

5.
==

succ_wrap :: (Bounded a, Enum a, Eq a) => a -> a

We read this type signature as follows: succ_wrap's input and output values are of the same type, and
must be a member of the Bounded, Enum and Eq classes (our 3 class constraints).
Terminology source: http://learnyouahaskell.com/types-and-typeclasses#typeclasses-101
(1988) R. Bird, Introduction to Functional Programming using Haskell, Ch. 2.1.1, p.32

Let's consider the definition for parametric polymorphism vs. ad hoc polymorphism:
"The idea that something is applicable to every type or holds for everything is called universal
quantification. In mathematical logic, the symbol .. an upside-down A, read as "forall" .. is commonly
used for that, it is called the universal quantifier .. parametric polymorphism = ignorant of the type
actually used. => \forall" http://en.wikibooks.org/wiki/Haskell/Polymorphism#Parametric_Polymorphism

"Parametric polymorphism refers to when the type of a value contains one or more (unconstrained) type
variables .. Since a parametrically polymorphic value does not "know" anything about the unconstrained
type variables, it must behave the same regardless of its type."

"You can recognise the presence of ad-hoc polymorphism by looking for constrained type variables: that
is, variables that appear to the left of =>, like in elem :: (Eq a) => a -> [a] -> Bool."
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism

We say that succ_wrap is an ad-hoc polymorphic function as it is constrained to 3 classes.

> succ_wrap d | d == maxBound = minBound
> | otherwise = succ d

We use this function in preference to succ because we want datatype Dir to wrap around. Source: See
discussion of q.2.

> pos :: Prog -> Pos -> Dir -> Pos
> pos (Stop) p d = p
> pos (Move x) p d = pos x (forwards' d p) d
> pos (Turn x) p d = pos x p (succ_wrap d)
> pos (SwapPen x) p d = pos x p d

8.
==

> type LineSegment = (Pos, Pos)
> type Picture = [LineSegment]

> plot :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot (Stop) p d b = []
> plot (Move x) p d True = (p, forwards' d p):plot x (forwards' d p) d True
> plot (Move x) p d False = plot x (forwards' d p) d False
> plot (Turn x) p d b = plot x p (succ_wrap d) b
> plot (SwapPen x) p d b = plot x p d (not b)

Alternatives:
We can see 2 pattern match lines for (Move x) which are related - we can make their relationship
clearer by merging them into one line by using a "case" pattern match:

> plot' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot' (Stop) p d b = []
> plot' (Move x) p d b = case b of True -> (p, next_p):next_x
> False -> next_x
> where next_p = forwards' d p
> next_x = plot' x next_p d b
> plot' (Turn x) p d b = plot' x p (succ_wrap d) b
> plot' (SwapPen x) p d b = plot' x p d (not b)

... or instead we could take advantage of Bool deriving Eq to test the boolean PenDown with guards:

> plot'' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot'' (Stop) p d b = []
> plot'' (Move x) p d b
> | b == True = (p, next_p):next_x
> | b == False = next_x
> where next_p = forwards' d p
> next_x = plot'' x next_p d b
> plot'' (Turn x) p d b = plot'' x p (succ_wrap d) b
> plot'' (SwapPen x) p d b = plot'' x p d (not b)

... yet since we are testing a boolean with one of only 2 outcomes we can make it shorter and clearer
still by using an if..else statement:

> plot''' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot''' (Stop) p d b = []
> plot''' (Move x) p d b = if b == True then (p, next_p):next_x else next_x
> where next_p = forwards' d p
> next_x = plot''' x next_p d b
> plot''' (Turn x) p d b = plot''' x p (succ_wrap d) b
> plot''' (SwapPen x) p d b = plot''' x p d (not b)

6

Questions_1_3_5_8_11.lhs

5.
==

succ_wrap :: (Bounded a, Enum a, Eq a) => a -> a

We read this type signature as follows: succ_wrap's input and output values are of the same type, and
must be a member of the Bounded, Enum and Eq classes (our 3 class constraints).
Terminology source: http://learnyouahaskell.com/types-and-typeclasses#typeclasses-101
(1988) R. Bird, Introduction to Functional Programming using Haskell, Ch. 2.1.1, p.32

Let's consider the definition for parametric polymorphism vs. ad hoc polymorphism:
"The idea that something is applicable to every type or holds for everything is called universal
quantification. In mathematical logic, the symbol .. an upside-down A, read as "forall" .. is commonly
used for that, it is called the universal quantifier .. parametric polymorphism = ignorant of the type
actually used. => \forall" http://en.wikibooks.org/wiki/Haskell/Polymorphism#Parametric_Polymorphism

"Parametric polymorphism refers to when the type of a value contains one or more (unconstrained) type
variables .. Since a parametrically polymorphic value does not "know" anything about the unconstrained
type variables, it must behave the same regardless of its type."

"You can recognise the presence of ad-hoc polymorphism by looking for constrained type variables: that
is, variables that appear to the left of =>, like in elem :: (Eq a) => a -> [a] -> Bool."
http://www.haskell.org/haskellwiki/Polymorphism#Ad-hoc_polymorphism

We say that succ_wrap is an ad-hoc polymorphic function as it is constrained to 3 classes.

> succ_wrap d | d == maxBound = minBound
> | otherwise = succ d

We use this function in preference to succ because we want datatype Dir to wrap around. Source: See
discussion of q.2.

> pos :: Prog -> Pos -> Dir -> Pos
> pos (Stop) p d = p
> pos (Move x) p d = pos x (forwards' d p) d
> pos (Turn x) p d = pos x p (succ_wrap d)
> pos (SwapPen x) p d = pos x p d

8.
==

> type LineSegment = (Pos, Pos)
> type Picture = [LineSegment]

> plot :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot (Stop) p d b = []
> plot (Move x) p d True = (p, forwards' d p):plot x (forwards' d p) d True
> plot (Move x) p d False = plot x (forwards' d p) d False
> plot (Turn x) p d b = plot x p (succ_wrap d) b
> plot (SwapPen x) p d b = plot x p d (not b)

Alternatives:
We can see 2 pattern match lines for (Move x) which are related - we can make their relationship
clearer by merging them into one line by using a "case" pattern match:

> plot' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot' (Stop) p d b = []
> plot' (Move x) p d b = case b of True -> (p, next_p):next_x
> False -> next_x
> where next_p = forwards' d p
> next_x = plot' x next_p d b
> plot' (Turn x) p d b = plot' x p (succ_wrap d) b
> plot' (SwapPen x) p d b = plot' x p d (not b)

... or instead we could take advantage of Bool deriving Eq to test the boolean PenDown with guards:

> plot'' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot'' (Stop) p d b = []
> plot'' (Move x) p d b
> | b == True = (p, next_p):next_x
> | b == False = next_x
> where next_p = forwards' d p
> next_x = plot'' x next_p d b
> plot'' (Turn x) p d b = plot'' x p (succ_wrap d) b
> plot'' (SwapPen x) p d b = plot'' x p d (not b)

... yet since we are testing a boolean with one of only 2 outcomes we can make it shorter and clearer
still by using an if..else statement:

> plot''' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot''' (Stop) p d b = []
> plot''' (Move x) p d b = if b == True then (p, next_p):next_x else next_x
> where next_p = forwards' d p
> next_x = plot''' x next_p d b
> plot''' (Turn x) p d b = plot''' x p (succ_wrap d) b
> plot''' (SwapPen x) p d b = plot''' x p d (not b)

11.
===

> data XML = Element String [Attr] [XML]
> type Attr = (String, String)

First off we utilize some existing functions that help us to render the XML datatype:
Source: http://www.macs.hw.ac.uk/~dsg/events/ISS-AiPL-2014/materials/Gibbons/Shapes-complete.lhs

> instance Show XML where
> show (Element n as []) = element n as
> show (Element n as xs) = open n as ++ unlines (map show xs) ++ close n

Our XML datatype defines an element in the syntax:
Element "name" [("attribute name"),("attribute value")] [] for leaf elements
Element "name" [("attribute name"),("attribute value")] [child Element] for nesting elements

So instance declares two rendering functions for these two possible syntaxes.

For leaf elements (an element with no children): render a string which is an open tag, name, any
attribute pairs (function attrs) and closed tag.

> element :: String -> [Attr] -> String
> element n as = "<" ++ n ++ attrs as ++ "/>"

For elements with children: open the tag, show the name, the list of nested element(s) (unlines (map
show xs)), and close the tag.

> open :: String -> [Attr] -> String
> open n as = "<" ++ n ++ attrs as ++ ">\n"

> close :: String -> String
> close n = "</" ++ n ++ ">"

> attrs :: [Attr] -> String
> attrs as = concat [" "++k++"="++ show v | (k,v)<-as]

Useful! Now we create a function picture_lines that traverses our Picture (a list of line segments) and
produces a list of Elements.

7

Questions_1_3_5_8_11.lhs

> succ_wrap d | d == maxBound = minBound
> | otherwise = succ d

We use this function in preference to succ because we want datatype Dir to wrap around. Source: See
discussion of q.2.

> pos :: Prog -> Pos -> Dir -> Pos
> pos (Stop) p d = p
> pos (Move x) p d = pos x (forwards' d p) d
> pos (Turn x) p d = pos x p (succ_wrap d)
> pos (SwapPen x) p d = pos x p d

8.
==

> type LineSegment = (Pos, Pos)
> type Picture = [LineSegment]

> plot :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot (Stop) p d b = []
> plot (Move x) p d True = (p, forwards' d p):plot x (forwards' d p) d True
> plot (Move x) p d False = plot x (forwards' d p) d False
> plot (Turn x) p d b = plot x p (succ_wrap d) b
> plot (SwapPen x) p d b = plot x p d (not b)

Alternatives:
We can see 2 pattern match lines for (Move x) which are related - we can make their relationship
clearer by merging them into one line by using a "case" pattern match:

> plot' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot' (Stop) p d b = []
> plot' (Move x) p d b = case b of True -> (p, next_p):next_x
> False -> next_x
> where next_p = forwards' d p
> next_x = plot' x next_p d b
> plot' (Turn x) p d b = plot' x p (succ_wrap d) b
> plot' (SwapPen x) p d b = plot' x p d (not b)

... or instead we could take advantage of Bool deriving Eq to test the boolean PenDown with guards:

> plot'' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot'' (Stop) p d b = []
> plot'' (Move x) p d b
> | b == True = (p, next_p):next_x
> | b == False = next_x
> where next_p = forwards' d p
> next_x = plot'' x next_p d b
> plot'' (Turn x) p d b = plot'' x p (succ_wrap d) b
> plot'' (SwapPen x) p d b = plot'' x p d (not b)

... yet since we are testing a boolean with one of only 2 outcomes we can make it shorter and clearer
still by using an if..else statement:

> plot''' :: Prog -> Pos -> Dir -> PenDown -> Picture
> plot''' (Stop) p d b = []
> plot''' (Move x) p d b = if b == True then (p, next_p):next_x else next_x
> where next_p = forwards' d p
> next_x = plot''' x next_p d b
> plot''' (Turn x) p d b = plot''' x p (succ_wrap d) b
> plot''' (SwapPen x) p d b = plot''' x p d (not b)

11.
===

> data XML = Element String [Attr] [XML]
> type Attr = (String, String)

First off we utilize some existing functions that help us to render the XML datatype:
Source: http://www.macs.hw.ac.uk/~dsg/events/ISS-AiPL-2014/materials/Gibbons/Shapes-complete.lhs

> instance Show XML where
> show (Element n as []) = element n as
> show (Element n as xs) = open n as ++ unlines (map show xs) ++ close n

Our XML datatype defines an element in the syntax:
Element "name" [("attribute name"),("attribute value")] [] for leaf elements
Element "name" [("attribute name"),("attribute value")] [child Element] for nesting elements

So instance declares two rendering functions for these two possible syntaxes.

For leaf elements (an element with no children): render a string which is an open tag, name, any
attribute pairs (function attrs) and closed tag.

> element :: String -> [Attr] -> String
> element n as = "<" ++ n ++ attrs as ++ "/>"

For elements with children: open the tag, show the name, the list of nested element(s) (unlines (map
show xs)), and close the tag.

> open :: String -> [Attr] -> String
> open n as = "<" ++ n ++ attrs as ++ ">\n"

> close :: String -> String
> close n = "</" ++ n ++ ">"

> attrs :: [Attr] -> String
> attrs as = concat [" "++k++"="++ show v | (k,v)<-as]

Useful! Now we create a function picture_lines that traverses our Picture (a list of line segments) and
produces a list of Elements.

Given we are traversing an input list to generate an output list a fold sounds applicable. We have
opted for a right fold because it allows us to accumulate elements to the head using (:), rather than
adding them to the tail with (++) which is way more expensive ("Haskell has to walk through the whole
list on the left side of ++ .. putting something at the beginning of a list using the : operator .. is
instantaneous", source: http://learnyouahaskell.com/starting-out#an-intro-to-lists).

> picture_lines :: Picture -> [XML]
> picture_lines = foldr (\((x1, y1), (x2, y2)) acc -> (Element "line" [("x1", show $ x1*100), ("y1",
show $ y1*100), ("x2", show $ x2*100), ("y2", show $ y2*100)] []) : acc) []

> svg :: Picture -> XML
> svg p = Element "svg" [("width","204"), ("height","204"), ("viewBox", "-102,-102,204,204"),
("xmlns", "http://www.w3.org/2000/svg"), ("version", "1.1")] [
> Element "g" [("transform","scale(1,-1)"), ("stroke-width","4"), ("stroke-linecap","round"),
("stroke","black"), ("fill","none")] (
> picture_lines p)]

Throughout this assignment I have provided multiple versions of functions, where the final version is
the most efficient.
Let's try it with our 4 versions of plot, using the favourite version last:

$ writeFile "snail-1.svg" (show (svg (plot snail (0, 0) North False)))
$ writeFile "snail-2.svg" (show (svg (plot' snail (0, 0) North False)))
$ writeFile "snail-3.svg" (show (svg (plot'' snail (0, 0) North False)))
$ writeFile "snail-4.svg" (show (svg (plot''' snail (0, 0) North False)))
$ diff --report-identical-files --from-file snail-{1..4}.svg model_answer.svg
Files snail-1.svg and snail-2.svg are identical
Files snail-1.svg and snail-3.svg are identical
Files snail-1.svg and snail-4.svg are identical
Files snail-1.svg and model_answer.svg are identical

8

2 Questions 4, 6, 7, 9, 10

e-copy: Questions_4_6_7_9_10.lhs

9

Questions_4_6_7_9_10.lhs

Questions 4, 6, 7, 9, 10
========================

> import Questions_1_3_5_8_11

To prevent duplication we import datatype Dir and functions succ_wrap, forwards'.

4.
==

> type Pos = (Integer, Integer)
> type Dir2 = Pos -> Pos

> north, west, south, east :: Dir2

> north (x, y) = (x, y+1)
> west (x, y) = (x-1, y)
> south (x, y) = (x, y-1)
> east (x, y) = (x+1, y)

We can nest these functions:
$ north (north (0,0))
(0,2)

A contrast of deep embedding versus shallow embedding is given in the paper "Folding Domain-Specific
Languages: Deep and Shallow Embeddings" (2014, J. Gibbons, N. Wu, Source:
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/embedding.pdf).
These two contrasts are shown in the file ./deep_vs_shallow.png.
If required, we might imitate the shallow embedding example ad verbatim by providing a function
(eval)uation to represent the whole expression and (lit)eral to represent a coordinate:

> type Expr = Pos
> lit n = n
> eval :: Expr -> Pos
> eval n = n

$ eval (north (north (lit (0,0))))
(0,2)

... this seems optional for illustrating shallow embedding, so we won't perform this additional step
with our subsequent questions.

10

Questions_4_6_7_9_10.lhs

Languages: Deep and Shallow Embeddings" (2014, J. Gibbons, N. Wu, Source:
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/embedding.pdf).
These two contrasts are shown in the file ./deep_vs_shallow.png.
If required, we might imitate the shallow embedding example ad verbatim by providing a function
(eval)uation to represent the whole expression and (lit)eral to represent a coordinate:

> type Expr = Pos
> lit n = n
> eval :: Expr -> Pos
> eval n = n

$ eval (north (north (lit (0,0))))
(0,2)

... this seems optional for illustrating shallow embedding, so we won't perform this additional step
with our subsequent questions.

6.
==

Attempt 1: Reverse engineering q. 10

If forwards provides a semantics for language Dir (forwards :: Dir -> Pos -> Pos), such that
type Dir2 = Pos -> Pos,
then if pos provides a semantics for language Prog (pos :: Prog -> Pos -> Dir -> Pos) we conclude
type Prog2 = Pos -> Dir -> Pos.

We have already imported the necessary datatype Dir and its constructors from module
Questions_1_3_5_8_11, so no need to repeat them here.

> type A = (Pos -> Dir -> Pos) -- pos semantics

> type Prog2 = (A -> A, A -> A, A -> A, A) -> A
> move2, turn2, pen2 :: Prog2 -> Prog2
> stop2 :: Prog2
> move2 x = \(m, t, p, s) -> m(x (m, t, p, s))
> turn2 x = \(m, t, p, s) -> t(x (m, t, p, s))
> pen2 x = \(m, t, p, s) -> p(x (m, t, p, s))
> stop2 = \(m, t, p, s) -> s

$ let program_A = turn2 (move2 (pen2 (move2 (pen2 stop2)))) :: Prog2

Attempt 2: researched method

A contrast of deep embedding versus shallow embedding is given in the paper "Functional Programming for
Domain−Specific Languages" (2013, J. Gibbons, Source:
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fp4dsls.pdf).
An example of a shallow embedding for type IntegerSet (and its four associated functions) is given (see
file ./shallow.png), which is quite similar to our DSL; note the similarity in program expressions, and
how 'Empty' is equivalent to our 'Stop'. We can use this as an example.

As in Attempt 1,
If forwards provides a semantics for language Dir (forwards :: Dir -> Pos -> Pos), such that
type Dir2 = Pos -> Pos,
then if pos provides a semantics for language Prog (pos :: Prog -> Pos -> Dir -> Pos) we conclude
type Prog2' = type Pos -> Dir -> Pos.

We have already imported the necessary functions (forwards', succ_wrap) from module
Questions_1_3_5_8_11, so no need to repeat them here. We just need to write some laws:

> type Prog2' = Pos -> Dir -> Pos
> move2', turn2', pen2' :: Prog2' -> Prog2'
> stop2' :: Prog2'
> move2' f p d = f (forwards' d p) d
> turn2' f p d = f p (succ_wrap d)
> pen2' f p d = f p d
> stop2' p d = p

$ let program_A' = turn2' (move2' (pen2' (move2' (pen2' stop2')))) :: Prog2'

11

Questions_4_6_7_9_10.lhs

6.
==

Attempt 1: Reverse engineering q. 10

If forwards provides a semantics for language Dir (forwards :: Dir -> Pos -> Pos), such that
type Dir2 = Pos -> Pos,
then if pos provides a semantics for language Prog (pos :: Prog -> Pos -> Dir -> Pos) we conclude
type Prog2 = Pos -> Dir -> Pos.

We have already imported the necessary datatype Dir and its constructors from module
Questions_1_3_5_8_11, so no need to repeat them here.

> type A = (Pos -> Dir -> Pos) -- pos semantics

> type Prog2 = (A -> A, A -> A, A -> A, A) -> A
> move2, turn2, pen2 :: Prog2 -> Prog2
> stop2 :: Prog2
> move2 x = \(m, t, p, s) -> m(x (m, t, p, s))
> turn2 x = \(m, t, p, s) -> t(x (m, t, p, s))
> pen2 x = \(m, t, p, s) -> p(x (m, t, p, s))
> stop2 = \(m, t, p, s) -> s

$ let program_A = turn2 (move2 (pen2 (move2 (pen2 stop2)))) :: Prog2

Attempt 2: researched method

A contrast of deep embedding versus shallow embedding is given in the paper "Functional Programming for
Domain−Specific Languages" (2013, J. Gibbons, Source:
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fp4dsls.pdf).
An example of a shallow embedding for type IntegerSet (and its four associated functions) is given (see
file ./shallow.png), which is quite similar to our DSL; note the similarity in program expressions, and
how 'Empty' is equivalent to our 'Stop'. We can use this as an example.

As in Attempt 1,
If forwards provides a semantics for language Dir (forwards :: Dir -> Pos -> Pos), such that
type Dir2 = Pos -> Pos,
then if pos provides a semantics for language Prog (pos :: Prog -> Pos -> Dir -> Pos) we conclude
type Prog2' = type Pos -> Dir -> Pos.

We have already imported the necessary functions (forwards', succ_wrap) from module
Questions_1_3_5_8_11, so no need to repeat them here. We just need to write some laws:

> type Prog2' = Pos -> Dir -> Pos
> move2', turn2', pen2' :: Prog2' -> Prog2'
> stop2' :: Prog2'
> move2' f p d = f (forwards' d p) d
> turn2' f p d = f p (succ_wrap d)
> pen2' f p d = f p d
> stop2' p d = p

$ let program_A' = turn2' (move2' (pen2' (move2' (pen2' stop2')))) :: Prog2'

Note here that pen2' does nothing, as the PenDown boolean does not exist in our semantic! I expect
that's why the function was referred to as pen2 instead of swapPen2.

You will find additional discussion of why I attempted questions 6 and 9 twice in section "3.2 Review
of Section 2".

7.
==

We cannot use Dir2 as a drop in replacement for Dir in our existing functions because they represent
two different things.
Whereas Dir represents a stationary direction, the four Dir2 functions represent the coordinate for a
step in that direction.
Each Dir2 function in answer 4 is equivalent to the pos function; we are stating the origin and the
direction (whether as a parameter or by the function name itself), and returning the final position.

This confuses matters because it means for a program x, we need to state every position we wish to turn
in (thereby replacing the turn function, as the robot can now move to any direction from any direction
in a single step, rather than 1, 2 or 3 chained turn commands).
Specifically for the replacement in the function pos, it means also that the forwards command is made
redundant, since the four Dir2 commands provide the result of forward.

If I was going to provide a shallow embedding of directions I would define a function that emulates
function succ_wrap without our existing enumerated datatype Dir, but rather using directions of type
String as shown:

> dsucc_wrap :: String -> String
> dsucc_wrap d
> | d == "north" = "west"
> | d == "west" = "south"
> | d == "south" = "east"
> | d == "east" = "north"

$ dsucc_wrap "east"
"north"

now I can replace the type signature for function pos as:

pos :: Prog -> Pos -> String -> Pos

replacing the Turn command pattern match from:
pos (Turn x) p d = pos x p (succ_wrap d)
to:
pos (Turn x) p d = pos x p (dsucc_wrap d)

... and perform a similar substitution from datatype Dir to type synonym String in any other functions
that pos uses (i.e. function forwards').

I would have made a list, but we can only head and tail (or index, take and drop) on a list ... a list
is not enumerated or bounded, so we cannot use function succ as we would on a datatype
("[Haskell-beginners] Just clarifying the "pred" and "succ" functions in Haskell", Source:
http://www.haskell.org/pipermail/beginners/2010-February/003449.html). This teaches us the value of
creating a datatype is that it allows us to benefit from any functions that belong to the same
typeclass (such as function succ for typeclass Enum, or function maxBound for typeclass Bounded).

12

Questions_4_6_7_9_10.lhs

A contrast of deep embedding versus shallow embedding is given in the paper "Functional Programming for
Domain−Specific Languages" (2013, J. Gibbons, Source:
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fp4dsls.pdf).
An example of a shallow embedding for type IntegerSet (and its four associated functions) is given (see
file ./shallow.png), which is quite similar to our DSL; note the similarity in program expressions, and
how 'Empty' is equivalent to our 'Stop'. We can use this as an example.

As in Attempt 1,
If forwards provides a semantics for language Dir (forwards :: Dir -> Pos -> Pos), such that
type Dir2 = Pos -> Pos,
then if pos provides a semantics for language Prog (pos :: Prog -> Pos -> Dir -> Pos) we conclude
type Prog2' = type Pos -> Dir -> Pos.

We have already imported the necessary functions (forwards', succ_wrap) from module
Questions_1_3_5_8_11, so no need to repeat them here. We just need to write some laws:

> type Prog2' = Pos -> Dir -> Pos
> move2', turn2', pen2' :: Prog2' -> Prog2'
> stop2' :: Prog2'
> move2' f p d = f (forwards' d p) d
> turn2' f p d = f p (succ_wrap d)
> pen2' f p d = f p d
> stop2' p d = p

$ let program_A' = turn2' (move2' (pen2' (move2' (pen2' stop2')))) :: Prog2'

Note here that pen2' does nothing, as the PenDown boolean does not exist in our semantic! I expect
that's why the function was referred to as pen2 instead of swapPen2.

You will find additional discussion of why I attempted questions 6 and 9 twice in section "3.2 Review
of Section 2".

7.
==

We cannot use Dir2 as a drop in replacement for Dir in our existing functions because they represent
two different things.
Whereas Dir represents a stationary direction, the four Dir2 functions represent the coordinate for a
step in that direction.
Each Dir2 function in answer 4 is equivalent to the pos function; we are stating the origin and the
direction (whether as a parameter or by the function name itself), and returning the final position.

This confuses matters because it means for a program x, we need to state every position we wish to turn
in (thereby replacing the turn function, as the robot can now move to any direction from any direction
in a single step, rather than 1, 2 or 3 chained turn commands).
Specifically for the replacement in the function pos, it means also that the forwards command is made
redundant, since the four Dir2 commands provide the result of forward.

If I was going to provide a shallow embedding of directions I would define a function that emulates
function succ_wrap without our existing enumerated datatype Dir, but rather using directions of type
String as shown:

> dsucc_wrap :: String -> String
> dsucc_wrap d
> | d == "north" = "west"
> | d == "west" = "south"
> | d == "south" = "east"
> | d == "east" = "north"

$ dsucc_wrap "east"
"north"

now I can replace the type signature for function pos as:

pos :: Prog -> Pos -> String -> Pos

replacing the Turn command pattern match from:
pos (Turn x) p d = pos x p (succ_wrap d)
to:
pos (Turn x) p d = pos x p (dsucc_wrap d)

... and perform a similar substitution from datatype Dir to type synonym String in any other functions
that pos uses (i.e. function forwards').

I would have made a list, but we can only head and tail (or index, take and drop) on a list ... a list
is not enumerated or bounded, so we cannot use function succ as we would on a datatype
("[Haskell-beginners] Just clarifying the "pred" and "succ" functions in Haskell", Source:
http://www.haskell.org/pipermail/beginners/2010-February/003449.html). This teaches us the value of
creating a datatype is that it allows us to benefit from any functions that belong to the same
typeclass (such as function succ for typeclass Enum, or function maxBound for typeclass Bounded).

9.
==

Attempt 1: Reverse engineering q. 10

> type PenDown = Bool
> type LineSegment = (Pos, Pos)
> type Picture = [LineSegment]

> type B = (Pos -> Dir -> PenDown -> Picture) -- plot semantics - similar reasoning to q. 6

> type Prog3 = (B -> B, B -> B, B -> B, B) -> B
> move3, turn3, swapPen3 :: Prog3 -> Prog3
> stop3 :: Prog3
> move3 x = \(m, t, p, s) -> m(x (m, t, p, s))
> turn3 x = \(m, t, p, s) -> t(x (m, t, p, s))
> swapPen3 x = \(m, t, p, s) -> p(x (m, t, p, s))
> stop3 = \(m, t, p, s) -> s

$ let program_B = turn3 (move3 (swapPen3 (move3 (swapPen3 stop3)))) :: Prog3

Attempt 2: researched method

> type Prog3' = Pos -> Dir -> PenDown -> Picture
> move3', turn3', swapPen3' :: Prog3' -> Prog3'
> stop3' :: Prog3'
> move3' f p d True = (p, forwards' d p):f (forwards' d p) d True
> move3' f p d False = f (forwards' d p) d False
> turn3' f p d b = f p (succ_wrap d) b
> swapPen3' f p d b = f p d (not b)
> stop3' p d b = []

$ let program_B' = turn3' (move3' (swapPen3' (move3' (swapPen3' stop3')))) :: Prog3'

You will find additional discussion of why I attempted questions 6 and 9 twice in section "3.2 Review
of Section 2".

13

Questions_4_6_7_9_10.lhs

Note here that pen2' does nothing, as the PenDown boolean does not exist in our semantic! I expect
that's why the function was referred to as pen2 instead of swapPen2.

You will find additional discussion of why I attempted questions 6 and 9 twice in section "3.2 Review
of Section 2".

7.
==

We cannot use Dir2 as a drop in replacement for Dir in our existing functions because they represent
two different things.
Whereas Dir represents a stationary direction, the four Dir2 functions represent the coordinate for a
step in that direction.
Each Dir2 function in answer 4 is equivalent to the pos function; we are stating the origin and the
direction (whether as a parameter or by the function name itself), and returning the final position.

This confuses matters because it means for a program x, we need to state every position we wish to turn
in (thereby replacing the turn function, as the robot can now move to any direction from any direction
in a single step, rather than 1, 2 or 3 chained turn commands).
Specifically for the replacement in the function pos, it means also that the forwards command is made
redundant, since the four Dir2 commands provide the result of forward.

If I was going to provide a shallow embedding of directions I would define a function that emulates
function succ_wrap without our existing enumerated datatype Dir, but rather using directions of type
String as shown:

> dsucc_wrap :: String -> String
> dsucc_wrap d
> | d == "north" = "west"
> | d == "west" = "south"
> | d == "south" = "east"
> | d == "east" = "north"

$ dsucc_wrap "east"
"north"

now I can replace the type signature for function pos as:

pos :: Prog -> Pos -> String -> Pos

replacing the Turn command pattern match from:
pos (Turn x) p d = pos x p (succ_wrap d)
to:
pos (Turn x) p d = pos x p (dsucc_wrap d)

... and perform a similar substitution from datatype Dir to type synonym String in any other functions
that pos uses (i.e. function forwards').

I would have made a list, but we can only head and tail (or index, take and drop) on a list ... a list
is not enumerated or bounded, so we cannot use function succ as we would on a datatype
("[Haskell-beginners] Just clarifying the "pred" and "succ" functions in Haskell", Source:
http://www.haskell.org/pipermail/beginners/2010-February/003449.html). This teaches us the value of
creating a datatype is that it allows us to benefit from any functions that belong to the same
typeclass (such as function succ for typeclass Enum, or function maxBound for typeclass Bounded).

9.
==

Attempt 1: Reverse engineering q. 10

> type PenDown = Bool
> type LineSegment = (Pos, Pos)
> type Picture = [LineSegment]

> type B = (Pos -> Dir -> PenDown -> Picture) -- plot semantics - similar reasoning to q. 6

> type Prog3 = (B -> B, B -> B, B -> B, B) -> B
> move3, turn3, swapPen3 :: Prog3 -> Prog3
> stop3 :: Prog3
> move3 x = \(m, t, p, s) -> m(x (m, t, p, s))
> turn3 x = \(m, t, p, s) -> t(x (m, t, p, s))
> swapPen3 x = \(m, t, p, s) -> p(x (m, t, p, s))
> stop3 = \(m, t, p, s) -> s

$ let program_B = turn3 (move3 (swapPen3 (move3 (swapPen3 stop3)))) :: Prog3

Attempt 2: researched method

> type Prog3' = Pos -> Dir -> PenDown -> Picture
> move3', turn3', swapPen3' :: Prog3' -> Prog3'
> stop3' :: Prog3'
> move3' f p d True = (p, forwards' d p):f (forwards' d p) d True
> move3' f p d False = f (forwards' d p) d False
> turn3' f p d b = f p (succ_wrap d) b
> swapPen3' f p d b = f p d (not b)
> stop3' p d b = []

$ let program_B' = turn3' (move3' (swapPen3' (move3' (swapPen3' stop3')))) :: Prog3'

You will find additional discussion of why I attempted questions 6 and 9 twice in section "3.2 Review
of Section 2".

10.
===

$ let program_A = turn2 (move2 (pen2 (move2 (pen2 stop2)))) :: Prog2
$ let program_A' = turn2' (move2' (pen2' (move2' (pen2' stop2')))) :: Prog2'

We have a few commands to extract information from our programs (see "bash $ man ghc"):

$:t program_A
program_A :: Prog2

$:t program_A'
program_A' :: Prog2'

Prints the type of program_A or program_A'.

$:info program_A
program_A :: Prog2 -- Defined at <interactive>:38:5

$:info program_A'
program_A' :: Prog2' -- Defined at <interactive>:39:5

if program_A or program_A' were a class, then the class methods and their types would be printed;
if program_A or program_A' were a type constructor, then its definition would be printed;
since program_A or program_A' is a function, its type is printed (as in command :t).

$:info Prog2
type Prog2 = (A -> A, A -> A, A -> A, A) -> A -- Defined at Questions_4_6_7_9_10.lhs:68:1

Since ‘Prog2’ is a type constructor, its definition is printed.

$:info A
type A = Pos -> Dir -> Pos -- Defined at Questions_4_6_7_9_10.lhs:66:1

Since ‘A’ is a type constructor, its definition is printed.

$:info Prog2'
type Prog2' = Pos -> Dir -> Pos -- Defined at Questions_4_6_7_9_10.lhs:92:1

Since ‘Prog2'’ is a type constructor, its definition is printed.

These GHCi commands are illustrated for the shallow embeddings of question 6, and can also be applied
to question 9's program_B and program_B'.

14

3 What I have learned

Throughout this exercise (and throughout my life) I have been creating a log of
what I have learned during programming. The last month was naturally dominated
by Haskell, and I'm glad to have come across this succinct language. Due to its neat
syntax 90% of the work can be done on paper with another 5 minutes to type it up!

Here is my recap of what I picked up from this assignment.

1 Review of Section 1

Question 1. The value of pattern matching.

This is a remarkable feature of Haskell. It enabled me to list all the expected func-
tion inputs in an itemized way.

One thing I noted down though � I was struggling to turn a data constructor
& argument into a wild card (so as to provide a single wildcard to capture both
Move and Turn constructors with argument x).
I kept coming across this: http://stackover�ow.com/questions/12520438/pattern-
matching-on-constructor-wildcard, so instead I explored the alternative of guards
(which I use in question 3). At this point I realized the purpose of deriving type
classes like Eq.

Question 2. This was my �rst attempt at sourcing relevant functions from Prelude
and elsewhere.

I learned to use function succ on data types, and recognized its limitations (were
succ a UNIX userland program it would have had a �ag to wrap, but in Haskell we
have to �nd or write a completely new function � or perhaps overload the existing
de�nition). So I needed to add function succ_wrap to my code snippets library.

Question 3. Easy enough.

I was enjoying pattern matching, but the alternative let me write less using guards.

Question 5. Now I'm sourcing functions, and using those that I have already de-
�ned.

Haskell seems to prefer this notion of de�ning very brief functions (2 lines), and
then promoting the reuse of those functions elsewhere to make the caller functions
cleaner and more readable.
Evidently function reuse is a fundamental concept of programming, but questions
1�5 hit this message home. In order to do that though, you �rst have to design it

15

http://stackoverflow.com/questions/12520438/pattern-matching-on-constructor-wildcard
http://stackoverflow.com/questions/12520438/pattern-matching-on-constructor-wildcard

all on paper. So when creating my programs, designing them �rst with an assign-
ment style `de�ne this function which depends on that function etc.' speci�cation
is good, and one I have imitated in private projects since the start of this assignment.

Once you have de�ned the assignment functions on paper you have basically written
the program!

Question 8. This answer o�ered 4 alternative de�nitions of plot.

The �rst step was just getting it working, and then 3 attempts at utilizing book
knowledge to make the notation cleaner.

This question taught me how to build lists with recursion. Tuples (consisting of
a variety of datatypes) collected into a list could probably capture anything, and we
can traverse this structure easily ..

Question 11. OK. I picked up a lot from this one.

My �rst idea at this was totally non-recursive and lame. The plan was to create a
header string, a body string and a footer string and glue them all together.
However, I wanted to do things your way. I was fortunate that I decided to web
search for the �data XML� expression, and having found the library I had to �gure
it out.

What I picked up from this is that recursion can be used in more places than is
initially apparent.

My initial approach was to make a hard coded string (header), make a recursive
function to generate the body (line elements) which were clearly repeating, and
then another single string for the footer.
It became clear that every element line itself is a recursive structure (a list of name
/ value pairs), and that the whole document (with its nested elements) is a recursive
structure too! A whole new perspective of breaking problems down rather than set-
tling on the �rst approach. I did not recognize that recursion in the �rst look, but
now I'm going to be on the lookout for evidence of recursive structures elsewhere.
A really good example.

2 Review of Section 2

I found the questions in section 2 harder because I wasn't sure where to look for
information (I searched through a number of books via Amazon.com for the term
`shallow'). Fortunately Google lead me to your two papers which gave me a good
understanding of shallow vs. deep embedding. I have stuck in a number of quotes
from both book and online sources here to try to illustrate the research I did.

16

Question 4. That was simple enough.

I appreciated the di�erence between deep embedding and shallow embedding from
a couple of online sources. We know that when deep embedding is used an abstract
syntax tree is constructed1, 2, yet nonetheless if we avoid deep embedding to produce
shallow embedding, the two are still related by folds (I know folds!). I only read the
�rst 1.5 pages of the 2014 paper2 though because it gave me what I needed � see
picture ./deep_vs_shallow.png (below).

eval2 uses constructors Lit, Add (deep embedding)
eval3 avoids the constructors (shallow embedding)1,3.

Question 6, 7, 9, 10. These questions were related.

My inclination here was to start rewriting my functions using shallow embedding
(Attempt 2), but I played with Attempt 1 (because question 10 implied we might
be able to derive answers 6 and 9 from its listing).

1�Deep embedding: Haskell operations only build an interim Haskell data structure that re�ects
the expression tree. E.g. the Haskell expression `a+b' is translated to the Haskell data structure
Add (Var �a�) (Var �b�). This structure allows transformations like optimizations before translating
to the target language.�
http://www.haskell.org/haskellwiki/Embedded_domain_specific_language

2�With a deep embedding, terms in the DSL are implemented simply to construct an abstract
syntax tree (AST), which is subsequently transformed for optimization. With a shallow embedding,
terms in the DSL are implemented directly by their semantics, bypassing the intermediate AST
and its traversal.�
(2014) J. Gibbons, N. Wu, �Folding Domain-Speci�c Languages:Deep and Shallow Embeddings�.
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/embedding.pdf

3Another contrast of a deep embedding and its shallow embedding alternative is found in chapter
8.3 of (2014) R. Bird, �Thinking Functionally with Haskell ''.

17

http://www.haskell.org/haskellwiki/Embedded_domain_specific_language
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/embedding.pdf

It became clear that Dir2 was not quite the same as Dir, as it made functions
forwards' and turn redundant. My biggest hurdle here was appreciating the deci-
sion to use Dir (despite the fact that I was trying to provide shallow embedding). I
pre-empted question 7 - but since this was addressing the fact that Dir2 was not to
be used (and that we recognize Dir is a deep embedding4 for which we will provide
an alternative later), I continued with Attempt 1, laying me up for some discussion
and another solution in question 7.

I felt that since question 10 encompassed both Prog2 and Prog3, surely I could
reverse engineer it to answer questions 6 and 9.

I had to �gure out the meaning of the listing in question 10:

program (m)ove (t)urn (p) swapPen (s)top program

ProgS a = (a → a, a → a, a → a, a) → a

Where the �rst 3 commands (move, turn, swapPen :: ProgS a → ProgS a) were
functions to functions, and the �nal command (stop :: progS a) did not take a func-
tion as an argument.

When I made my second attempt at question 6, I followed my instinct a bit more,
by recreating the functions based on the type de�nition I had concluded (as shown
in the 2013 paper5). Trying to implement this with Dir2 and attempting to write
a swapPen function without a boolean seemed impossible, but then I realized that
you had given us a hint by the function name. In this second attempt, I found
myself writing 4 empty function de�nitions ahead of time, and then padding them
all out line by line as I had seen you doing on the projector (because there was no
way it would compile unless I had them all � unless I wrote them individually, as in
�le ./shallow.png). These de�nitions are starting to look very like formal notation.

4�In a shallow embedding logical formulas are written directly in the logic of the theorem prover,
whereas in a deep embedding logical formulas are represented as a datatype.''
http://cstheory.stackexchange.com/questions/1370/shallow-versus-deep-embeddings

5�Whereas in a deep embedding the constructors do nothing and the observers do all the work,
in a shallow embedding it is the other way round: the observers are trivial, and all the computation
is in the constructors.
Deep embedding makes it easier to extend the DSL with new observers, such as new analy-
ses of programs in the language: just de�ne a new function by induction over the abstract
syntax. But it is more di�cult to extend the syntax of the language with new operators, be-
cause each extension entails revisiting the de�nitions of all existing observers. Conversely, shal-
low embedding makes new operators easier to add than new observers . . . The challenge of get-
ting the best of both worlds �� extensibility in both dimensions at once �� has been called
the expression problem.�
(2013) J. Gibbons, �Functional Programming for Domain=Speci�c Languages�.
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fp4dsls.pdf

18

http://cstheory.stackexchange.com/questions/1370/shallow-versus-deep-embeddings
http://www.cs.ox.ac.uk/jeremy.gibbons/publications/fp4dsls.pdf

Another example of shallow embedding.
type IntegerSet and its 4 programs5

In the example from question 10 I recognized how programs move, turn, swapPen
and stop were captured in the type brackets � progS was taking a program that
could consist of any of those 4 programs (where the �nal stop command did not
lead to another function), and how the pattern matches (those that took another
function: m, t, p) would bring that command to the head and execute the remain-
der program. It's still a bit confusing, but there's a de�nite symmetry that can be
reverse engineered and altered. It reminded me of constructing a parser in lex (a
common undergraduate topic). The robot has given us a de�nite illustration of a
language of nested commands (from a limited dictionary) to create output (data
Prog and XML have shown one language can be transformed to another for design-
ing markup). Once you've created a DSL (the deeply embedded language for the
robot), you can automatically translate its structure to another (e.g. XML). That's
neat.

You speak about this approach in practical exercise 12 - in future I'm going to
consider designing a domain speci�c language for depicting a chain of functions, be-
cause with this assignment as a reference it's really not as complicated as it sounds.

19

3 End

Thanks for introducing me to Haskell!

Honestly, of the many languages I have come across, this is the best.

I'm going to use it for prototyping my �nal project (which will be in objective-
c), probably deconstructing the Haskell into some formal notation (or vice versa).
I've started practising it for quick scripting already (see http://users.ox.ac.uk/
~kell3138/code/HAS/wordlist.hs). Since I could now write �les, I had a go at
reading them and interacting with the user.

20

http://users.ox.ac.uk/~kell3138/code/HAS/wordlist.hs
http://users.ox.ac.uk/~kell3138/code/HAS/wordlist.hs

	Contents
	Questions 1-3, 5, 8, 11 e-copy: Questions_1_3_5_8_11.lhs
	Questions 4, 6, 7, 9, 10 e-copy: Questions_4_6_7_9_10.lhs
	What I have learned
	Review of Section 1
	Review of Section 2
	End

